Membrane Protein Crystallization


Book Description

This volume of Current Topics in Membranes focuses on Membrane Protein Crystallization, beginning with a review of past successes and general trends, then further discussing challenges of mebranes protein crystallization, cell free production of membrane proteins and novel lipids for membrane protein crystallization. This publication also includes tools to enchance membrane protein crystallization, technique advancements, and crystallization strategies used for photosystem I and its complexes, establishing Membrane Protein Crystallization as a needed, practical reference for researchers.




Study of Bacteriorhodopsin in a Controlled Lipid Environment


Book Description

This book focuses on the study of how the properties of nanodiscs, such as lipid composition and size, influence the function of the embedding integral membrane protein, bacteriorhodopsin. The author performed systematic studies to show that the lipid composition and the charge of the hydrophobic head and the structure of hydrophilic tails affect the photocycle pathway of bacteriorhodopsin, which is closely associated with its proton-pumping activity. Furthermore, the author demonstrated a highly efficient method for extracting membrane proteins directly from the biological membrane, preserving protein conformation, function and essential native lipids. This book demonstrates optimization and sample preparation, and presents practical methods of preparing membrane protein-embedded nanodisc samples for biophysical studies, which benefit structural and functional studies in the field of membrane protein characterization, both.




Liposomes, Lipid Bilayers and Model Membranes


Book Description

As a result of their unique physical properties, biological membrane mimetics, such as liposomes, are used in a broad range of scientific and technological applications. Liposomes, Lipid Bilayers and Model Membranes: From Basic Research to Application describes state-of-the-art research and future directions in the field of membranes, which has evolved from basic studies of the physicochemical properties of amphiphiles to their application in industry and medicine. Written by leading researchers in their fields, this book describes basic and applied research, and serves as a useful reference for both the novice and the expert. Part one covers a range of basic research topics, from theory and computational simulations to some of the most up-to-date experimental research. Topics discussed include soft matter physics of membranes, nonlamellar phases, extraction of molecules by amphiphiles, lipid models for membrane rafts, membrane dynamics, nanodiscs, microemulsions, active membranes, as well as interactions of bilayers with drugs or DNA to treat disease or for gene transfer, respectively. Part two of the book focuses on technological applications of amphiphiles, such as liposome-based nanoparticles for drug delivery, formulation of liposomes for prolonged in vivo circulation and functionalization for medical purposes, novel drug delivery systems for increased drug loading, and the use of tethered membranes for bio-sensing applications. Chapters also describe the use of liposomes in textile dyeing and how lipidic nanoparticles are used by the food industry.




Peptide-Lipid Interactions


Book Description

This volume contains a comprehensive overview of peptide-lipid interactions by leading researchers. The first part covers theoretical concepts, experimental considerations, and thermodynamics. The second part presents new results obtained through site-directed EPR, electron microscopy, NMR, isothermal calorimetry, and fluorescence quenching. The final part covers problems of biological interest, including signal transduction, membrane transport, fusion, and adhesion. Key Features * world-renowned experts * state-of-the-art experimental methods * monolayers, bilayers, biological membranes * theoretical aspects and computer simulations * rafts * synaptic transmission * membrane fusion * signal transduction




Lipid-Protein Interactions


Book Description

Biological membranes are the essential structuring elements of all living cells. Many enzymatic reactions take place at the membrane-water interface. To gain detailed insight into membrane properties, it is therefore of great importance to understand the complex nature of the interactions of membrane proteins with lipids. Lipid-Protein Interactions: Methods and Protocols provides a selection of protocols to examine protein-lipid interactions, membrane and membrane protein structure, how membrane proteins affect lipids and how they are in turn affected by the lipid bilayer and lipid properties. The methods described here are all actively used, complementary, and necessary to obtain comprehensive information about membrane structure and function. They include label-free approaches, imaging techniques and spectroscopic methodologies. Written in the successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Lipid-Protein Interactions: Methods and Protocols seeks to serve both professional and novices with its wide range of the methods frequently used in this area of research.




NMR with Biological Macromolecules in Solution


Book Description

The book provides insights into the research of the Kurt Wüthrich laboratories from 1996-2020. During this time period, the technique of nuclear magnetic resonance (NMR) spectroscopy in solution went through several breakthroughs, while maturing into a standard method of structural biology. With the introduction of TROSY (transverse relaxation-optimized spectroscopy), the range of accessible molecular sizes was extended about thirty-fold, and efficient protein structure determination resulted from the demands of the structural genomics initiative. Applications in fundamental biology and biomedicine include studies of prion proteins and prion diseases (TSEs), the SARS-Corona virus proteome, trans-membrane signalling by G protein-coupled receptors (GPCRs), and signal transfer by pheromones.Key publications from the Kurt Wüthrich laboratories are placed in perspective, providing insights into new aspects of NMR spectroscopy in structural biology. In addition to methods development, this includes applications in diverse areas of biological research, such as prion proteins and their role in transmissible spongiform encephalopathies (TSEs), trans-membrane signal transfer by G protein-coupled receptors (GPCRs), structural characterization of the SARS-Corona virus proteome, metabolic-flux profiling in bacterial cultures, and signal transfers by pheromones.




The Biophysics of Cell Membranes


Book Description

This volume focuses on the modulation of biological membranes by specific biophysical properties. The readers are introduced to emerging biophysical approaches that mimick specific states (like membrane lipid asymmetry, membrane curvature, lipid flip-flop, lipid phase separation) that are relevant to the functioning of biological membranes. The first chapter describes innovative methods to mimic the prevailing asymmetry in biological membranes by forming asymmetrical membranes made of monolayers with different compositions. One of the chapters illustrates how physical parameters, like curvature and elasticity, can affect and modulate the interactions between lipids and proteins. This volume also describes the sensitivity of certain ion channels to mechanical forces and it presents an analysis of how cell shape is determined by both the cytoskeleton and the lipid domains in the membrane. The last chapter provides evidence that liposomes can be used as a minimal cellular model to reconstitute processes related to the origin of life. Each topic covered in this volume is presented by leading experts in the field who are able to present clear, authoritative and up-to-date reviews. The novelty of the methods proposed and their potential for a deeper molecular description of membrane functioning are particularly relevant experts in the areas of biochemistry, biophysics and cell biology, while also presenting clear and thorough introductions, making the material suitable for students in these fields as well.




Cholesterol Binding and Cholesterol Transport Proteins:


Book Description

Knowledge of cholesterol and its interaction with protein molecules is of fundamental importance in both animal and human biology. This book contains 22 chapters, dealing in depth with structural and functional aspects of the currently known and extremely diverse unrelated families of cholesterol-binding and cholesterol transport proteins. By drawing together this range of topics the Editor has attempted to correlate this broad field of study for the first time. Technical aspects are given considerable emphasis, particularly in relation cholesterol reporter molecules and to the isolation and study of membrane cholesterol- and sphingomyelin-rich "raft" domains. Cell biological, biochemical and clinical topics are included in this book, which serve to emphasize the acknowledged and important benefits to be gained from the study of cholesterol and cholesterol-binding proteins within the biomedical sciences and the involvement of cholesterol in several clinical disorders. It is hoped that by presenting this topic in this integrated manner that an appreciation of the fact that there is much more that needs to be taken into account, studied and understood than the widely discussed "bad and good cholesterol" associated, respectively, with the low- and high-density lipoproteins, LDL and HDL.




Computational Modeling of Membrane Bilayers


Book Description

Current Topics in Membranes provides a systematic, comprehensive, and rigorous approach to specific topics relevant to the study of cellular membranes. Each volume is a guest edited compendium of membrane biology. *Discusses the current stat of electrostatics in biomolecular simulations and future directions *Includes information on time and length scales in lipid bilayer simulations *Includes a chapter on the nature of lipid rafts




Membrane Proteins in Aqueous Solutions


Book Description

This book is the first to be entirely devoted to the challenging art of handling membrane proteins out of their natural environment, a key process in biological and pharmaceutical research, but one plagued with difficulties and pitfalls. Written by one of the foremost experts in the field, Membrane Proteins in Aqueous Solutions is accessible to any member of a membrane biology laboratory. After presenting the structure, functions, dynamics, synthesis, natural environment and lipid interactions of membrane proteins, the author discusses the principles of extracting them with detergents, the mechanisms of detergent-induced destabilization, countermeasures, and recent progress in developing detergents with weaker denaturing properties. Non-conventional alternatives to detergents, including bicelles, nanodiscs, amphipathic peptides, fluorinated surfactants and amphipols, are described, and their relative advantages and drawbacks are compared. The synthesis and solution properties of the various types of amphipols are presented, as well as the formation and properties of membrane protein/amphipol complexes and the transfer of amphipol-trapped proteins to detergents, nanodiscs, lipidic mesophases, or living cells. The final chapters of the book deal with applications: membrane protein in vitro folding and cell-free expression, solution studies, NMR, crystallography, electron microscopy, mass spectrometry, amphipol-mediated immobilization of membrane proteins, and biomedical applications. Important features of the book include introductory sections describing foundations as well as the state-of-the-art for each of the biophysical techniques discussed, and topical tables which organize a widely dispersed literature. Boxes and annexes throughout the book explain technical aspects, and twelve detailed experimental protocols, ranging from in vitro folding of membrane proteins to single-particle electron cryomicroscopy, have been contributed by and commented on by experienced users. Membrane Proteins in Aqueous Solutions offers a concise, accessible introduction to membrane protein biochemistry and biophysics, as well as comprehensive coverage of the properties and uses of conventional and non-conventional surfactants. It will be useful both in basic and applied research laboratories and as a teaching aid for students, instructors, researchers, and professionals within the field.