Numerical Methods in Science and Engineering – A Practical Approach


Book Description

During the past two decades,owing to the advent of digital computers,numerical methods of analysis have become very popular for the solution of complex problems in physical and management sciences and in engineering.As the price of hardware keeps decreasing repidly,experts predict that in the near future one may have to pay onliy for sodtware.This underscores the importance of numerical computation to the scientist and engineers and,today,most undergraduates and postgraduates are being given training in the use of computers and access to the computers for the solution of problems.







Applied Numerical Methods Using MATLAB


Book Description

In recent years, with the introduction of new media products, there has been a shift in the use of programming languages from FORTRAN or C to MATLAB for implementing numerical methods. This book makes use of the powerful MATLAB software to avoid complex derivations, and to teach the fundamental concepts using the software to solve practical problems. Over the years, many textbooks have been written on the subject of numerical methods. Based on their course experience, the authors use a more practical approach and link every method to real engineering and/or science problems. The main benefit is that engineers don't have to know the mathematical theory in order to apply the numerical methods for solving their real-life problems. An Instructor's Manual presenting detailed solutions to all the problems in the book is available online.







Numerical Recipes in C++


Book Description

Now the acclaimed Second Edition of Numerical Recipes is available in the C++ object-oriented programming language. Including and updating the full mathematical and explanatory contents of Numerical Recipes in C, this new version incorporates completely new C++ versions of the more than 300 Numerical Recipes routines that are widely recognized as the most accessible and practical basis for scientific computing. The product of a unique collaboration among four leading scientists in academic research and industry, Numerical Recipes is a complete text and reference book on scientific computing. In a self-contained manner it proceeds from mathematical and theoretical considerations to actual practical computer routines. Highlights include linear algebra, interpolation, special functions, random numbers, nonlinear sets of equations, optimization, eigensystems, Fourier methods and wavelets, statistical tests, ODEs and PDEs, integral equations and inverse theory. The authors approach to C++ preserves the efficient execution that C users expect, while simultaneously employing a clear, object-oriented interface to the routines. Tricks and tips for scientific computing in C++ are liberally included. The routines, in ANSI/ISO C++ source code, can thus be used with almost any existing C++ vector/matrix class library, according to user preference. A simple class library for stand-alone use is also included in the book. Both scientific programmers new to C++, and experienced C++ programmers who need access to the Numerical Recipes routines, can benefit from this important new version of an invaluable, classic text.




Introductory Signal Processing


Book Description

A valuable introduction to the fundamentals of continuous and discrete time signal processing, this book is intended for the reader with little or no background in this subject. The emphasis is on development from basic principles. With this book the reader can become knowledgeable about both the theoretical and practical aspects of digital signal processing.Some special features of this book are: (1) gradual and step-by-step development of the mathematics for signal processing, (2) numerous examples and homework problems, (3) evolutionary development of Fourier series, Discrete Fourier Transform, Fourier Transform, Laplace Transform, and Z-Transform, (4) emphasis on the relationship between continuous and discrete time signal processing, (5) many examples of using the computer for applying the theory, (6) computer based assignments to gain practical insight, (7) a set of computer programs to aid the reader in applying the theory.




COMPUTER ORIENTED NUMERICAL METHODS


Book Description

This book is a concise and lucid introduction to computer oriented numerical methods with well-chosen graphical illustrations that give an insight into the mechanism of various methods. The book develops computational algorithms for solving non-linear algebraic equation, sets of linear equations, curve-fitting, integration, differentiation, and solving ordinary differential equations. OUTSTANDING FEATURES • Elementary presentation of numerical methods using computers for solving a variety of problems for students who have only basic level knowledge of mathematics. • Geometrical illustrations used to explain how numerical algorithms are evolved. • Emphasis on implementation of numerical algorithm on computers. • Detailed discussion of IEEE standard for representing floating point numbers. • Algorithms derived and presented using a simple English based structured language. • Truncation and rounding errors in numerical calculations explained. • Each chapter starts with learning goals and all methods illustrated with numerical examples. • Appendix gives pointers to open source libraries for numerical computation.




Elementary Theory and Application of Numerical Analysis


Book Description

This updated introduction to modern numerical analysis is a complete revision of a classic text originally written in Fortran but now featuring the programming language C++. It focuses on a relatively small number of basic concepts and techniques. Many exercises appear throughout the text, most with solutions. An extensive tutorial explains how to solve problems with C++.




EBOOK: Applied Numerical Methods with MATLAB for Engineers and Scientists


Book Description

Steven Chapra’s Applied Numerical Methods with MATLAB, third edition, is written for engineering and science students who need to learn numerical problem solving. Theory is introduced to inform key concepts which are framed in applications and demonstrated using MATLAB. The book is designed for a one-semester or one-quarter course in numerical methods typically taken by undergraduates. The third edition features new chapters on Eigenvalues and Fourier Analysis and is accompanied by an extensive set of m-files and instructor materials.