Applied Soil Mechanics with ABAQUS Applications


Book Description

A simplified approach to applying the Finite Element Method to geotechnical problems Predicting soil behavior by constitutive equations that are based on experimental findings and embodied in numerical methods, such as the finite element method, is a significant aspect of soil mechanics. Engineers are able to solve a wide range of geotechnical engineering problems, especially inherently complex ones that resist traditional analysis. Applied Soil Mechanics with ABAQUS® Applications provides civil engineering students and practitioners with a simple, basic introduction to applying the finite element method to soil mechanics problems. Accessible to someone with little background in soil mechanics and finite element analysis, Applied Soil Mechanics with ABAQUS® Applications explains the basic concepts of soil mechanics and then prepares the reader for solving geotechnical engineering problems using both traditional engineering solutions and the more versatile, finite element solutions. Topics covered include: Properties of Soil Elasticity and Plasticity Stresses in Soil Consolidation Shear Strength of Soil Shallow Foundations Lateral Earth Pressure and Retaining Walls Piles and Pile Groups Seepage Taking a unique approach, the author describes the general soil mechanics for each topic, shows traditional applications of these principles with longhand solutions, and then presents finite element solutions for the same applications, comparing both. The book is prepared with ABAQUS® software applications to enable a range of readers to experiment firsthand with the principles described in the book (the software application files are available under "student resources" at www.wiley.com/college/helwany). By presenting both the traditional solutions alongside the FEM solutions, Applied Soil Mechanics with ABAQUS® Applications is an ideal introduction to traditional soil mechanics and a guide to alternative solutions and emergent methods. Dr. Helwany also has an online course based on the book available at www.geomilwaukee.com.




Finite Element Analysis in Geotechnical Engineering


Book Description

An insight into the use of the finite method in geotechnical engineering. The first volume covers the theory and the second volume covers the applications of the subject. The work examines popular constitutive models, numerical techniques and case studies.




Unsaturated Soil Mechanics


Book Description

Unsaturated Soil Mechanics is the first book to provide a comprehensive introduction to the fundamental principles of unsaturated soil mechanics. * Offers extensive sample problems with an accompanying solutions manual. * Brings together the rapid advances in research in unsaturated soil mechanics in one focused volume. * Covers advances in effective stress and suction and hydraulic conductivity measurement.




Soil Mechanics


Book Description

This book teaches the principles of soil mechanics to undergraduates, along with other properties of engineering materials, to which the students are exposed simultaneously. Using the critical state method of soil mechanics to study the mechanical behavior of soils requires the student to consider density alongside effective stresses, permitting the unification of deformation and strength characteristics. This unification aids the understanding of soil mechanics. This book explores a one-dimensional theme for the presentation of many of the key concepts of soil mechanics - density, stress, stiffness, strength, and fluid flow - and includes a chapter on the analysis of one-dimensional consolidation, which fits nicely with the theme of the book. It also presents some theoretical analyses of soil-structure interaction, which can be analyzed using essentially one-dimensional governing equations. Examples are given at the end of most chapters, and suggestions for laboratory exercises or demonstrations are given.




Basic and Applied Soil Mechanics


Book Description

Basic And Applied Soil Mechanics Is Intended For Use As An Up-To-Date Text For The Two-Course Sequence Of Soil Mechanics And Foundation Engineering Offered To Undergraduate Civil Engineering Students. It Provides A Modern Coverage Of The Engineering Properties Of Soils And Makes Extensive Reference To The Indian Standard Codes Of Practice While Discussing Practices In Foundation Engineering. Some Topics Of Special Interest, Like The Schmertmann Procedure For Extrapolation Of Field Compressibility, Determination Of Secondary Compression, Lambes Stress - Path Concept, Pressure Meter Testing And Foundation Practices On Expansive Soils Including Certain Widespread Myths, Find A Place In The Text.The Book Includes Over 160 Fully Solved Examples, Which Are Designed To Illustrate The Application Of The Principles Of Soil Mechanics In Practical Situations. Extensive Use Of Si Units, Side By Side With Other Mixed Units, Makes It Easy For The Students As Well As Professionals Who Are Less Conversant With The Si Units, Gain Familiarity With This System Of International Usage. Inclusion Of About 160 Short-Answer Questions And Over 400 Objective Questions In The Question Bank Makes The Book Useful For Engineering Students As Well As For Those Preparing For Gate, Upsc And Other Qualifying Examinations.In Addition To Serving The Needs Of The Civil Engineering Students, The Book Will Serve As A Handy Reference For The Practising Engineers As Well.




Introduction to Soil Mechanics


Book Description

INTRODUCTION TO SOIL MECHANICS Introduction to Soil Mechanics covers the basic principles of soil mechanics, illustrating why the properties of soil are important, the techniques used to understand and characterise soil behaviour and how that knowledge is then applied in construction. The authors have endeavoured to define and discuss the principles and concepts concisely, providing clear, detailed explanations, and a wellillustrated text with diagrams, charts, graphs and tables. With many practical, worked examples and end-of-chapter problems (with fully worked solutions available at www.wiley.com/go/bodo/soilmechanics) and coverage of Eurocode 7, Introduction to Soil Mechanics will be an ideal starting point for the study of soil mechanics and geotechnical engineering. This book’s companion website is at www.wiley.com/go/bodo/soilmechanics and offers invaluable resources for both students and lecturers: Supplementary problems Solutions to supplementary problems




Applied Mechanics of Solids


Book Description

Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o




Recent Developments of Soil Mechanics and Geotechnics in Theory and Practice


Book Description

This book provides essential insights into recent developments in fundamental geotechnical engineering research. Special emphasis is given to a new family of constitutive soil description methods, which take into account the recent loading history and the dilatancy effects. Particular attention is also paid to the numerical implementation of multi-phase material under dynamic loads, and to geotechnical installation processes. In turn, the book addresses implementation problems concerning large deformations in soils during piling operations or densification processes, and discusses the limitations of the respective methods. Numerical simulations of dynamic consolidation processes are presented in slope stability analysis under seismic excitation. Lastly, achieving the energy transition from conventional to renewable sources will call for geotechnical expertise. Consequently, the book explores and analyzes a selection of interesting problems involving the stability and serviceability of supporting structures, and provides new solutions approaches for practitioners and scientists in geotechnical engineering. The content reflects the outcomes of the Colloquium on Geotechnical Engineering 2019 (Geotechnik Kolloquium), held in Karlsruhe, Germany in September 2019.




Soil Mechanics in Engineering Practice


Book Description

This book constitutes the definitive handbook to soil mechanics, covering in great detail such topics as: Properties of Soils, Hydraulic and Mechanical Properties of Soils, Drainage of Soils, Plastic Equilibrium in Soils, Earth Stability and Pressure of Slopes, Foundations, etc. A valuable compendium for those interested in soil mechanics, this antiquarian text contains a wealth of information still very much valuable to engineers today. Karl von Terzaghi (1883 1963) was a Czech geologist and Civil engineer, hailed as the "father of soil mechanics." This book has been elected for republication due to its educational value and is proudly republished here with an introductory biography of the author."




Soil Mechanics Fundamentals


Book Description

This accessible, clear and concise textbook strikes a balance between theory and practical applications for an introductory course in soil mechanics for undergraduates in civil engineering, construction, mining and geological engineering. Soil Mechanics Fundamentals lays a solid foundation on key principles of soil mechanics for application in later engineering courses as well as in engineering practice. With this textbook, students will learn how to conduct a site investigation, acquire an understanding of the physical and mechanical properties of soils and methods of determining them, and apply the knowledge gained to analyse and design earthworks, simple foundations, retaining walls and slopes. The author discusses and demonstrates contemporary ideas and methods of interpreting the physical and mechanical properties of soils for both fundamental knowledge and for practical applications. The chapter presentation and content is informed by modern theories of how students learn: Learning objectives inform students what knowledge and skills they are expected to gain from the chapter. Definitions of Key Terms are given which students may not have encountered previously, or may have been understood in a different context. Key Point summaries throughout emphasize the most important points in the material just read. Practical Examples give students an opportunity to see how the prior and current principles are integrated to solve ‘real world’ problems.