Approximability of Optimization Problems through Adiabatic Quantum Computation


Book Description

The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrödinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is large enough, then the system remains close to its ground state. An AQC algorithm uses the adiabatic theorem to approximate the ground state of the final Hamiltonian that corresponds to the solution of the given optimization problem. In this book, we investigate the computational simulation of AQC algorithms applied to the MAX-SAT problem. A symbolic analysis of the AQC solution is given in order to understand the involved computational complexity of AQC algorithms. This approach can be extended to other combinatorial optimization problems and can be used for the classical simulation of an AQC algorithm where a Hamiltonian problem is constructed. This construction requires the computation of a sparse matrix of dimension 2n × 2n, by means of tensor products, where n is the dimension of the quantum system. Also, a general scheme to design AQC algorithms is proposed, based on a natural correspondence between optimization Boolean variables and quantum bits. Combinatorial graph problems are in correspondence with pseudo-Boolean maps that are reduced in polynomial time to quadratic maps. Finally, the relation among NP-hard problems is investigated, as well as its logical representability, and is applied to the design of AQC algorithms. It is shown that every monadic second-order logic (MSOL) expression has associated pseudo-Boolean maps that can be obtained by expanding the given expression, and also can be reduced to quadratic forms. Table of Contents: Preface / Acknowledgments / Introduction / Approximability of NP-hard Problems / Adiabatic Quantum Computing / Efficient Hamiltonian Construction / AQC for Pseudo-Boolean Optimization / A General Strategy to Solve NP-Hard Problems / Conclusions / Bibliography / Authors' Biographies




Quantum Robotics


Book Description

Quantum robotics is an emerging engineering and scientific research discipline that explores the application of quantum mechanics, quantum computing, quantum algorithms, and related fields to robotics. This work broadly surveys advances in our scientific understanding and engineering of quantum mechanisms and how these developments are expected to impact the technical capability for robots to sense, plan, learn, and act in a dynamic environment. It also discusses the new technological potential that quantum approaches may unlock for sensing and control, especially for exploring and manipulating quantum-scale environments. Finally, the work surveys the state of the art in current implementations, along with their benefits and limitations, and provides a roadmap for the future.




Graph Theory: Adiabatic Quantum Computing Methods


Book Description

"Graph Theory: Adiabatic Quantum Computing Methods" explores the convergence of quantum computing and graph theory, offering a comprehensive examination of how quantum algorithms can tackle fundamental graph problems. From foundational concepts to advanced applications in fields like cryptography, machine learning, and network analysis, this book provides a clear pathway into the evolving landscape of quantum-enhanced graph algorithms. Designed for researchers, students, and professionals alike, it bridges theoretical insights with practical implementations, paving the way for innovative solutions in computational graph theory.




Adiabatic Quantum Computation and Quantum Annealing


Book Description

Adiabatic quantum computation (AQC) is an alternative to the better-known gate model of quantum computation. The two models are polynomially equivalent, but otherwise quite dissimilar: one property that distinguishes AQC from the gate model is its analog nature. Quantum annealing (QA) describes a type of heuristic search algorithm that can be implemented to run in the ``native instruction set'' of an AQC platform. D-Wave Systems Inc. manufactures {quantum annealing processor chips} that exploit quantum properties to realize QA computations in hardware. The chips form the centerpiece of a novel computing platform designed to solve NP-hard optimization problems. Starting with a 16-qubit prototype announced in 2007, the company has launched and sold increasingly larger models: the 128-qubit D-Wave One system was announced in 2010 and the 512-qubit D-Wave Two system arrived on the scene in 2013. A 1,000-qubit model is expected to be available in 2014. This monograph presents an introductory overview of this unusual and rapidly developing approach to computation. We start with a survey of basic principles of quantum computation and what is known about the AQC model and the QA algorithm paradigm. Next we review the D-Wave technology stack and discuss some challenges to building and using quantum computing systems at a commercial scale. The last chapter reviews some experimental efforts to understand the properties and capabilities of these unusual platforms. The discussion throughout is aimed at an audience of computer scientists with little background in quantum computation or in physics.




Adiabatic Quantum Computation and Quantum Annealing


Book Description

Adiabatic quantum computation (AQC) is an alternative to the better-known gate model of quantum computation. The two models are polynomially equivalent, but otherwise quite dissimilar: one property that distinguishes AQC from the gate model is its analog nature. Quantum annealing (QA) describes a type of heuristic search algorithm that can be implemented to run in the ``native instruction set'' of an AQC platform. D-Wave Systems Inc. manufactures {quantum annealing processor chips} that exploit quantum properties to realize QA computations in hardware. The chips form the centerpiece of a novel computing platform designed to solve NP-hard optimization problems. Starting with a 16-qubit prototype announced in 2007, the company has launched and sold increasingly larger models: the 128-qubit D-Wave One system was announced in 2010 and the 512-qubit D-Wave Two system arrived on the scene in 2013. A 1,000-qubit model is expected to be available in 2014. This monograph presents an introductory overview of this unusual and rapidly developing approach to computation. We start with a survey of basic principles of quantum computation and what is known about the AQC model and the QA algorithm paradigm. Next we review the D-Wave technology stack and discuss some challenges to building and using quantum computing systems at a commercial scale. The last chapter reviews some experimental efforts to understand the properties and capabilities of these unusual platforms. The discussion throughout is aimed at an audience of computer scientists with little background in quantum computation or in physics. Table of Contents: Acknowledgments / Introduction / Adiabatic Quantum Computation / Quantum Annealing / The D-Wave Platform / Computational Experience / Bibliography / Author's Biography




Quantum Technology and Optimization Problems


Book Description

This book constitutes the refereed proceedings of the First International Workshop on Quantum Technology and Optimization Problems, QTOP 2019, held in Munich, Germany, in March 2019.The 18 full papers presented together with 1 keynote paper in this volume were carefully reviewed and selected from 21 submissions. The papers are grouped in the following topical sections: analysis of optimization problems; quantum gate algorithms; applications of quantum annealing; and foundations and quantum technologies.




Quantum Algorithms in Action


Book Description

"Quantum Algorithms in Action: A Practical Guide to Implementation with Qiskit" is an authoritative resource designed to bridge the gap between theory and practical application in quantum computing. This comprehensive guide demystifies complex quantum concepts while introducing readers to the powerful tools provided by Qiskit, an open-source quantum computing framework. It meticulously covers foundational topics such as quantum mechanics principles and quantum circuit design, making it an indispensable asset for both newcomers and seasoned professionals eager to explore the computational wonders of the quantum world. The book delves into the design and execution of quantum algorithms, providing step-by-step instructions for implementing notable algorithms like Grover's and Shor's. It addresses key challenges such as quantum error correction and program optimization, ensuring readers gain a well-rounded understanding of maintaining accuracy and efficiency in quantum computations. Through detailed case studies and real-world applications, readers can appreciate how quantum computing is transforming diverse sectors, highlighting the potential and challenges that lie ahead. As quantum computing continues to evolve, this guide equips its readers with the knowledge and skills necessary to be at the forefront of technological advancements.




Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques


Book Description

This is the joint refereed proceedings of the 9th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2006 and the 10th International Workshop on Randomization and Computation, RANDOM 2006. The book presents 44 carefully reviewed and revised full papers. Among the topics covered are design and analysis of approximation algorithms, hardness of approximation problems, small spaces and data streaming algorithms, embeddings and metric space methods, and more.




Quantum Hamiltonian Complexity


Book Description

This monograph provides an introduction to the rapidly growing field of Quantum Hamiltonian Complexity, which includes the study of quantum constraint satisfaction problems. It provides a computer science-oriented introduction to the subject in order to help bridge the language barrier between computer scientists and physicists in the field.




Fundamentals of Quantum Computing


Book Description

This introductory book on quantum computing includes an emphasis on the development of algorithms. Appropriate for both university students as well as software developers interested in programming a quantum computer, this practical approach to modern quantum computing takes the reader through the required background and up to the latest developments. Beginning with introductory chapters on the required math and quantum mechanics, Fundamentals of Quantum Computing proceeds to describe four leading qubit modalities and explains the core principles of quantum computing in detail. Providing a step-by-step derivation of math and source code, some of the well-known quantum algorithms are explained in simple ways so the reader can try them either on IBM Q or Microsoft QDK. The book also includes a chapter on adiabatic quantum computing and modern concepts such as topological quantum computing and surface codes. Features: o Foundational chapters that build the necessary background on math and quantum mechanics. o Examples and illustrations throughout provide a practical approach to quantum programming with end-of-chapter exercises. o Detailed treatment on four leading qubit modalities -- trapped-ion, superconducting transmons, topological qubits, and quantum dots -- teaches how qubits work so that readers can understand how quantum computers work under the hood and devise efficient algorithms and error correction codes. Also introduces protected qubits - 0-π qubits, fluxon parity protected qubits, and charge-parity protected qubits. o Principles of quantum computing, such as quantum superposition principle, quantum entanglement, quantum teleportation, no-cloning theorem, quantum parallelism, and quantum interference are explained in detail. A dedicated chapter on quantum algorithm explores both oracle-based, and Quantum Fourier Transform-based algorithms in detail with step-by-step math and working code that runs on IBM QisKit and Microsoft QDK. Topics on EPR Paradox, Quantum Key Distribution protocols, Density Matrix formalism, and Stabilizer formalism are intriguing. While focusing on the universal gate model of quantum computing, this book also introduces adiabatic quantum computing and quantum annealing. This book includes a section on fault-tolerant quantum computing to make the discussions complete. The topics on Quantum Error Correction, Surface codes such as Toric code and Planar code, and protected qubits help explain how fault tolerance can be built at the system level.