Aqueous Phase Adsorption


Book Description

This book covers theoretical aspects of adsorption, followed by an introduction to molecular simulations and other numerical techniques that have become extremely useful as an engineering tool in recent times to understand the interplay of different mechanistic steps of adsorption. Further, the book provides brief experimental methodologies to use, test, and evaluate different types of adsorbents for water pollutants. Through different chapters contributed by accomplished researchers working in the broad area of adsorption, this book provides the necessary fundamental background required for an academician, industrial scientist or engineer to initiate studies in this area. Key Features Explores fundamentals of adsorption-based separation Provides physical insight into aqueous phase adsorption Includes theory, molecular and mesoscopic level simulation techniques and experiments Describes molecular simulations and lattice-Boltzmann method based models for aqueous phase adsorption Presents state-of-art experimental works particularly addressing removal of "emerging pollutants" from aqueous phase




Aqueous Phase Adsorption


Book Description

This book covers theoretical aspects of adsorption, followed by an introduction to molecular simulations and other numerical techniques that have become extremely useful as an engineering tool in recent times to understand the interplay of different mechanistic steps of adsorption. Further, the book provides brief experimental methodologies to use, test, and evaluate different types of adsorbents for water pollutants. Through different chapters contributed by accomplished researchers working in the broad area of adsorption, this book provides the necessary fundamental background required for an academician, industrial scientist or engineer to initiate studies in this area. Key Features Explores fundamentals of adsorption-based separation Provides physical insight into aqueous phase adsorption Includes theory, molecular and mesoscopic level simulation techniques and experiments Describes molecular simulations and lattice-Boltzmann method based models for aqueous phase adsorption Presents state-of-art experimental works particularly addressing removal of "emerging pollutants" from aqueous phase




Analytical Applications Of Ionic Liquids


Book Description

Analytical Applications of Ionic Liquids reviews the current research in analytic chemistry, covering subjects as diverse as separation science, chromatography, spectroscopy and analytical electrochemistry.As scientific developments have moved into the 21st century, they have increasingly had to take into account the effects on the environment, both locally and globally. Because of this, the search for applications of ionic liquids is growing in every area of analytical chemistry. Here, material is presented by specialists, giving a critical overview of the current literature surrounding this increasingly prominent topic. Analysis is carried out on latest achievements and applications, followed by critical discussion of possible future developments.As well as stimulating further research among established analytical chemists, this book can also be used for undergraduate and graduate courses on chemistry and chemical technology.




Kinetics of Metal Ion Adsorption from Aqueous Solutions


Book Description

This monograph is intended to provide a systematic presentation of theories concerning the adsorption of metal ions from aqueous solutions onto surfaces of natural and synthetic substances and to outline methods and procedures to estimate the extent and progress ofadsorption. As heavy metals and the problems associated with their transport and distribution are of serious concern to human health and the environment, the materials presented in this volume have both theoretical and practical significance. In writing this monograph, one ofour goals was to prepare a book useful to environmental workers and practicing engineers. For this reason, our presentation relies heavily on concepts commonly used in the environmental engineering literature. In fact, the volume was prepared for readers with a basic understanding of environmental engineering principles and some knowledge of adsorption processes. No prior familiarity with the ionic solute adsorption at solid-solution interfaces is assumed. Instead, introduction of the necessary background information was included. Generally speaking, metal ion adsorption may be studied in terms of three distinct but interrelated phenomena: surface ionization, complex formation, and the formation and presence of an electrostatic double layer adjacent to adsorbent surfaces. Analyses of these phenomena with various degrees of sophistication are xviii ADSORPTION OF METAL IONS FROM AQUEOUS SOLUTIONS presented, and their various combinations yield different models that describe metal ion adsorption.




Recent Advances in Adsorption Processes for Environmental Protection and Security


Book Description

The purpose of the Workshop was to share knowledge on the latest advances on adsorption processes for environmental security and protection, as well as to disseminate the main results and achievements of recent NATO Science-for-Peace projects on environmental security and protection. This volume provides a comprehensive report on adsorption and colloids phenomena, carbon materials and adsorbents for various industrial applications, ecological safety and antiterrorism.




OECD Guidelines for the Testing of Chemicals, Section 1 Test No. 106: Adsorption -- Desorption Using a Batch Equilibrium Method


Book Description

This Test Guideline is aimed at estimating the adsorption/desorption behaviour of a chemical on different soil types. The goal is to obtain a sorption value which can be used to predict partitioning under a variety of environmental conditions; to ...




Lignins


Book Description




Adsorption Processes for Water Treatment and Purification


Book Description

This book provides researchers and graduate students with an overview of the latest developments in and applications of adsorption processes for water treatment and purification. In particular, it covers current topics in connection with the modeling and design of adsorption processes, and the synthesis and application of cost-effective adsorbents for the removal of relevant aquatic pollutants. The book describes recent advances and alternatives to improve the performance and efficacy of this water purification technique. In addition, selected chapters are devoted to discussing the reliable modeling and analysis of adsorption data, which are relevant for real-life applications to industrial effluents and groundwater. Overall, the book equips readers with a general perspective of the potential that adsorption processes hold for the removal of emerging water pollutants. It can readily be adopted as part of special courses on environmental engineering, adsorption and water treatment for upper undergraduate and graduate students. Furthermore, the book offers a valuable resource for researchers in water production control, as well as for practitioners interested in applying adsorption processes to real-world problems in water treatment and related areas.




Electrosorption


Book Description

The gradual emergence during the last decade of the study of the mechanism of electrode reactions from the dark ages has given stimulus to a consideration of the double layer at metal-solution interfaces, which extends far outside the classical experimental studies of the capacitance of the mercury solution interface made during the 1950's by D. C. Grahame at Amherst College, Massachusetts. The central aspect of the study of an electrode reaction is the elucidation of its path and rate-determining step. Two fields are, however, prerequisites for such studies. First, it must be known what species are in the bulk of the solution, for these will seldom be simple ones such as H30~ and this study ("complex ions") has been made with both extent and depth. Second, the occupancy of the surface of the electrocatalyst and the associated field gradients must be known as a function of position in the double layer. Such "maps of the double layer" can be given with reasonable certainty up to concentrations of about 1 N for mercury in contact with solutions of inorganic ions. However, this is-or was until very recently-the extent of the know ledge. The problems confronting a fundamental approach to the rational development of, e.g., fuel cell catalysis were therefore considerable.




Advanced Applications of Ionic Liquids


Book Description

Advanced Applications of Ionic Liquids discusses the intersection of nanotechnology with ionic liquids (ILs) and materials, along with opportunities for advanced engineering applications in various research fields. Novel materials at nano scales with ILs creates an upsurge in the thermal and electrochemical constancy of the nano scale particles, making them ideal for industrial applications. The implementation of ILs at nano scale includes an interaction of constituents, which is beneficial for electron transfer reactions. These new composites can be implemented as sensors, electronics, catalysts and photonics. Including ILs in polymer composites enhance electrochemical consistency, govern particle size, upsurge conductivity, reduce toxicity, and more. This book is a comprehensive reference for researchers working with IL based technologies for environmental and energy applications. - Covers all industrial aspects and advanced applications of ionic liquids (ILs) - Discusses the advanced applications of ILs across multiple fields, including industrial chemistry and chemical engineering - Includes a discussion of the use of ionic liquids in functional polymers, with applications for catalysis, energy conservation, sensors, and more