The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis


Book Description

This series of volumes is a unique summary of the present state of understanding of solid surfaces. The physical basis of chemisorption and heterogeneous catalysis is presented as a well-developed science with contributions from an international panel of chemists, physicists and metallurgists. The books are destined to become a fundamental and indispensable reference source for all those studying the nature of solid surfaces and catalysis.




Proteins at Solid-Liquid Interfaces


Book Description

This book opens with a description of fundamental aspects of protein adsorption to surfaces, a phenomenon that plays a key role in biotechnological applications, especially at solid-liquid interfaces. Presented here are methods for studying adsorption kinetics and conformational changes such as optical waveguide lightmode spectroscopy (OWLS). Also described are sensitive bench techniques for measuring the orientation and structure of proteins at solid-liquid interfaces, including total internal reflection ellipsometry (TIRE), dual polarisation interferometry (DPI) and time of flight - secondary ion mass spectrometry (TOF–SIMS). A model study of fibronectin at polymer surfaces is included, as are studies using microporous membranes and textiles with immobilized enzymes for large-scale applications. Biocompatibility, anti-fouling properties and surface modification to modulate the adsorption and activity of biomolecules are among the other topics addressed in this invaluable book.




Water in Biomaterials Surface Science


Book Description

Theorie, Analytik, Praxis: Dieser Band behandelt alle wesentlichen Aspekte eines relativ jungen Forschungsgebietes, das sich mit Wechselwirkungen an Grenzflächen zwischen biologischen Materialien (u.a. Polysacchariden, Polyethylenoxid, Proteinen, Kohlenhydraten) und Wasser beschäftigt. Diskutiert werden Konsequenzen für Biotechnologie, Medizin und für die Herstellung von Beschichtungen.







Biological Interactions on Materials Surfaces


Book Description

Success or failure of biomaterials, whether tissue engineered constructs, joint and dental implants, vascular grafts, or heart valves, depends on molecular-level events that determine subsequent responses of cells and tissues. This book presents the latest developments and state-of-the-art knowledge regarding protein, cell, and tissue interactions with both conventional and nanophase materials. Insight into these biomaterial surface interactions will play a critical role in further developments in fields such as tissue engineering, regenerative medicine, and biocompatibility of implanted materials and devices. With chapters written by leaders in their respective fields, this compendium will be the authoritative source of information for scientists, engineers, and medical researchers seeking not only to understand but also to control tissue-biomaterial interactions.




Hydrogen Exchange Mass Spectrometry of Proteins


Book Description

Hydrogen exchange mass spectrometry is widely recognized for its ability to probe the structure and dynamics of proteins. The application of this technique is becoming widespread due to its versatility for providing structural information about challenging biological macromolecules such as antibodies, flexible proteins and glycoproteins. Although the technique has been around for 25 years, this is the first definitive book devoted entirely to the topic. Hydrogen Exchange Mass Spectrometry of Proteins: Fundamentals, Methods and Applications brings into one comprehensive volume the theory, instrumentation and applications of Hydrogen Exchange Mass Spectrometry (HX-MS) - a technique relevant to bioanalytical chemistry, protein science and pharmaceuticals. The book provides a solid foundation in the basics of the technique and data interpretation to inform readers of current research in the method, and provides illustrative examples of its use in bio- and pharmaceutical chemistry and biophysics In-depth chapters on the fundamental theory of hydrogen exchange, and tutorial chapters on measurement and data analysis provide the essential background for those ready to adopt HX-MS. Expert users may advance their current understanding through chapters on methods including membrane protein analysis, alternative proteases, millisecond hydrogen exchange, top-down mass spectrometry, histidine exchange and method validation. All readers can explore the diversity of HX-MS applications in areas such as ligand binding, membrane proteins, drug discovery, therapeutic protein formulation, biocomparability, and intrinsically disordered proteins.




Microarrays


Book Description

Microarray Technology, Volumes 1 and 2, present information in designing and fabricating arrays and binding studies with biological analytes while providing the reader with a broad description of microarray technology tools and their potential applications. The first volume deals with methods and protocols for the preparation of microarrays. The second volume details applications and data analysis, which is important in analyzing the enormous data coming out of microarray experiments. Among the topics discussed in Volume 1: Synthesis Methods, are matrices in the synthesis of microarrays, array optimization processes, array-based comparative genomic hybridization, 60-mer oligonucleotide probes, bifunctional reagents NTMTA and NTPAC, and high density arrays using digital microarray synthesis platforms. Other topics include multiplex ligation-dependent probe amplification (MLPA), hybridization conditions in situ-synthesized oligo arrays, peptide arrays, high density replication tools (HDRT), protocols for the quantification of oligo hybridization, glyco-bead arrays, and an investigation into the emerging nano technology. Microarray Technology, Volumes 1 and 2, provide ample information to all levels of scientists from novice to those intimately familiar with array technology.




Interfacial Forces in Aqueous Media


Book Description

Thoroughly revised and reorganized, the second edition of Interfacial Forces in Aqueous Media examines the role of polar interfacial and noncovalent interactions among biological and nonbiological macromolecules as well as biopolymers, particles, surfaces, cells, and both polar and apolar polymers. The book encompasses Lifshitz-van de




Proteins in Solution and at Interfaces


Book Description

Explores new applications emerging from our latest understanding of proteins in solution and at interfaces Proteins in solution and at interfaces increasingly serve as the starting point for exciting new applications, from biomimetic materials to nanoparticle patterning. This book surveys the state of the science in the field, offering investigators a current understanding of the characteristics of proteins in solution and at interfaces as well as the techniques used to study these characteristics. Moreover, the authors explore many of the new and emerging applications that have resulted from the most recent studies. Topics include protein and protein aggregate structure; computational and experimental techniques to study protein structure, aggregation, and adsorption; proteins in non-standard conditions; and applications in biotechnology. Proteins in Solution and at Interfaces is divided into two parts: Part One introduces concepts as well as theoretical and experimental techniques that are used to study protein systems, including X-ray crystallography, nuclear magnetic resonance, small angle scattering, and spectroscopic methods Part Two examines current and emerging applications, including nanomaterials, natural fibrous proteins, and biomolecular thermodynamics The book's twenty-three chapters have been contributed by leading experts in the field. These contributions are based on a thorough review of the latest peer-reviewed findings as well as the authors' own research experience. Chapters begin with a discussion of core concepts and then gradually build in complexity, concluding with a forecast of future developments. Readers will not only gain a current understanding of proteins in solution and at interfaces, but also will discover how theoretical and technical developments in the field can be translated into new applications in material design, genetic engineering, personalized medicine, drug delivery, biosensors, and biotechnology.