Arduino Internals


Book Description

Arduino Internals guides you to the heart of the Arduino board. Author Dale Wheat shares his intimate knowledge of the Arduino board—its secrets, its strengths and possible alternatives to its constituent parts are laid open to scrutiny in this book. You'll learn to build new, improved Arduino boards and peripherals, while conforming to the Arduino reference design. Arduino Internals begins by reviewing the current Arduino hardware and software landscape. In particular, it offers a clear analysis of how the ATmega8 board works and when and where to use its derivatives. The chapter on the "hardware heart" is vital for the rest of the book and should be studied in some detail. Furthermore, Arduino Internals offers important information about the CPU running the Arduino board, the memory contained within it and the peripherals mounted on it. To be able to write software that runs optimally on what is a fairly small embedded board, one must understand how the different parts interact. Later in the book, you'll learn how to replace certain parts with more powerful alternatives and how to design Arduino peripherals and shields. Since Arduino Internals addresses both sides of the Arduino hardware-software boundary, the author analyzes the compiler toolchain and again provides suggestions on how to replace it with something more suitable for your own purposes. You'll also learn about how libraries enable you to change the way Arduino and software interact, and how to write your own library implementing algorithms you've devised yourself. Arduino Internals also suggests alternative programming environments, since many Arduino hackers have a background language other than C or Java. Of course, it is possible to optimize the way in which hardware and software interact—an entire chapter is dedicated to this field. Arduino Internals doesn't just focus on the different parts of Arduino architecture, but also on the ways in which example projects can take advantage of the new and improved Arduino board. Wheat employs example projects to exemplify the hacks and algorithms taught throughout the book. Arduino projects straddling the hardware-software boundary often require collaboration between people of different talents and skills which cannot be taken for granted. For this reason, Arduino Internals contains a whole chapter dedicated to collaboration and open source cooperation to make those tools and skills explicit. One of the crowning achievements of an Arduino hacker is to design a shield or peripheral residing on the Arduino board, which is the focus of the following chapter. A later chapter takes specialization further by examining Arduino protocols and communications, a field immediately relevant to shields and the communication between peripherals and the board. Finally, Arduino Internals integrates different skills and design techniques by presenting several projects that challenge you to put your newly-acquired skills to the test! Please note: the print version of this title is black & white; the eBook is full color.




Arduino Software Internals


Book Description

It’s not enough to just build your Arduino projects; it’s time to actually learn how things work! This book will take you through not only how to use the Arduino software and hardware, but more importantly show you how it all works and how the software relates to the hardware. Arduino Software Internals takes a detailed dive into the Arduino environment. We’ll cover the Arduino language, hardware features, and how makers can finally ease themselves away from the hand holding of the Arduino environment and move towards coding in plain AVR C++ and talk to the microcontroller in its native language. What You’ll Learn:How the Arduino Language interfaces with the hardware, as well as how it actually works in C++;How the compilation system works, and how kit can be altered to suit personal requirements;A small amount of AVR Assembly Language;Exactly how to set up and use the various hardware features of the AVR without needing to try and decode the data sheets – which are often bug ridden and unclear;Alternatives to the Arduino IDE which might give them a better workflow;How to build their own Arduino clone from scratch. Who This Book Is For: No expertise is required for this book! All you need is an interest in learning about what you’re making with Arduinos and how they work. This book is also useful for those looking to understand the AVR microcontroller used in the Arduino boards. In other words, all Makers are welcome!




Far Inside The Arduino


Book Description

Obtain the best performance from the ATmega4809 microcontroller in the Arduino Nano Every board by accessing features not utilized in the Arduino software library. This book is intended for those familiar with the ATmega328P in the Arduino Nano or Arduino Uno boards who want to take full advantage of the features in the Nano Every. Owners of the Far Inside The Arduino book will obtain the same in-depth treatment of the Nano Every. There are over 40 example programs, provided as a download from the authors website, illustrating the new or different features of this microcontroller.Topics include (with examples): -The Event System-Configurable Custom Logic-Changes to the memory map and EEPROM accessing-Changes to the ADC, Comparator, Timer/Counters, Watchdog Timer, SPI, USART, and TWI.-The new Real Time and Periodic Interrupt Timers -Arduino Library modifications for higher PWM frequencies, 1μs clock resolution, 8 times faster ADC, and 20MHz system clockExample programs demonstrate all 8 Timer/Counter B operating modes, and three Timer/Counter A operating modes, including using the Event input. There are also example programs for operating the TWI interface as both master and slave simultaneously, using the SPI as master and slave, with buffering for the slave, and for the USART asynchronous, synchronous, 1-wire, RS-485, and as a SPI master.




Arduino: A Technical Reference


Book Description

Rather than yet another project-based workbook, Arduino: A Technical Reference is a reference and handbook that thoroughly describes the electrical and performance aspects of an Arduino board and its software. This book brings together in one place all the information you need to get something done with Arduino. It will save you from endless web searches and digging through translations of datasheets or notes in project-based texts to find the information that corresponds to your own particular setup and question. Reference features include pinout diagrams, a discussion of the AVR microcontrollers used with Arduino boards, a look under the hood at the firmware and run-time libraries that make the Arduino unique, and extensive coverage of the various shields and add-on sensors that can be used with an Arduino. One chapter is devoted to creating a new shield from scratch. The book wraps up with detailed descriptions of three different projects: a programmable signal generator, a "smart" thermostat, and a programmable launch sequencer for model rockets. Each project highlights one or more topics that can be applied to other applications.




Arduino Project Handbook


Book Description

Arduino Project Handbook is a beginner-friendly collection of electronics projects using the low-cost Arduino board. With just a handful of components, an Arduino, and a computer, you’ll learn to build and program everything from light shows to arcade games to an ultrasonic security system. First you’ll get set up with an introduction to the Arduino and valuable advice on tools and components. Then you can work through the book in order or just jump to projects that catch your eye. Each project includes simple instructions, colorful photos and circuit diagrams, and all necessary code. Arduino Project Handbook is a fast and fun way to get started with micro­controllers that’s perfect for beginners, hobbyists, parents, and educators. Uses the Arduino Uno board.




Building Your Own Electronics Lab


Book Description

What should an electronics hackerspace look like? Is it in your bedroom, garage, a classroom, or even a suitcase? And where do you start? What parts are essential, and which are just nice to have? And how do you organize it all? Dale Wheat, the author of Arduino Internals, will show you how to build your own electronics lab complete with tools, parts, and power sources. You'll learn how to create a portable lab, a small lab to save space, and even a lab for small groups and classrooms. You'll learn which parts and tools are indispensable no matter what type projects you're working on: which soldering irons are best, which tools, cables, and testing equipment you'll need. You'll also learn about different chips, boards, sensors, power sources, and which ones you'll want to keep on hand. Finally, you'll learn how to assemble everything for the type of lab best suited to your needs. If you need to carry everything to your local makerspace, you can build the Portable Lab. If you plan to tinker at home or in the garage, there is the Corner Lab. If you're going to run your own local makerspace or you need to set up a lab to teach others, there is the Small-Group Lab. No matter what your gadgeteering needs may be, Building Your Own Electronics Lab will show you exactly how to put it all together so you have what you need to get started.




Arduino Workshop


Book Description

The Arduino is a cheap, flexible, open source microcontroller platform designed to make it easy for hobbyists to use electronics in homemade projects. With an almost unlimited range of input and output add-ons, sensors, indicators, displays, motors, and more, the Arduino offers you countless ways to create devices that interact with the world around you. In Arduino Workshop, you'll learn how these add-ons work and how to integrate them into your own projects. You'll start off with an overview of the Arduino system but quickly move on to coverage of various electronic components and concepts. Hands-on projects throughout the book reinforce what you've learned and show you how to apply that knowledge. As your understanding grows, the projects increase in complexity and sophistication. Among the book's 65 projects are useful devices like: – A digital thermometer that charts temperature changes on an LCD –A GPS logger that records data from your travels, which can be displayed on Google Maps – A handy tester that lets you check the voltage of any single-cell battery – A keypad-controlled lock that requires a secret code to open You'll also learn to build Arduino toys and games like: – An electronic version of the classic six-sided die – A binary quiz game that challenges your number conversion skills – A motorized remote control tank with collision detection to keep it from crashing Arduino Workshop will teach you the tricks and design principles of a master craftsman. Whatever your skill level, you'll have fun as you learn to harness the power of the Arduino for your own DIY projects. Uses the Arduino Uno board




Sams Teach Yourself Arduino Programming in 24 Hours


Book Description

In just 24 sessions of one hour or less, Sams Teach Yourself Arduino Programming in 24 Hours teaches you C programmingon Arduino, so you can start creating inspired "DIY" hardwareprojects of your own! Using this book's straightforward, step-by-stepapproach, you'll walk through everything from setting up yourprogramming environment to mastering C syntax and features, interfacing your Arduino to performing full-fledged prototyping.Every hands-on lesson and example builds on what you've alreadylearned, giving you a rock-solid foundation for real-world success! Step-by-step instructions carefully walk you through the most common Arduino programming tasks. Quizzes at the end of each chapter help you test your knowledge. By the Way notes present interesting information related to the discussion. Did You Know? tips offer advice or show you easier ways to perform tasks. Watch Out! cautions alert you to possible problems and give you advice on how to avoid them. Learn how to... Get the right Arduino hardware and accessories for your needs Download the Arduino IDE, install it, and link it to your Arduino Quickly create, compile, upload, and run your first Arduino program Master C syntax, decision control, strings, data structures, and functions Use pointers to work with memory--and avoid common mistakes Store data on your Arduino's EEPROM or an external SD card Use existing hardware libraries, or create your own Send output and read input from analog devices or digital interfaces Create and handle interrupts in software and hardware Communicate with devices via the SPI interface and I2C protocol Work with analog and digital sensors Write Arduino C programs that control motors Connect an LCD to your Arduino, and code the output Install an Ethernet shield, configure an Ethernet connection, and write networking programs Create prototyping environments, use prototyping shields, and interface electronics to your Arduino




Beginning Arduino Programming


Book Description

Beginning Arduino Programming allows you to quickly and intuitively develop your programming skills through sketching in code. This clear introduction provides you with an understanding of the basic framework for developing Arduino code, including the structure, syntax, functions, and libraries needed to create future projects. You will also learn how to program your Arduino interface board to sense the physical world, to control light, movement, and sound, and to create objects with interesting behavior. With Beginning Arduino Programming, you'll get the knowledge you need to master the fundamental aspects of writing code on the Arduino platform, even if you have never before written code. It will have you ready to take the next step: to explore new project ideas, new kinds of hardware, contribute back to the open source community, and even take on more programming languages.




Arduino Android Blueprints


Book Description

This book is for those who want to learn how to build exciting Arduino projects by interfacing it with Android. You will need to have some basic experience in electronics and programming. However, you don't need to have any previous experience with the Arduino or Android platforms.