An Introduction to Algebraic Structures


Book Description

This self-contained text covers sets and numbers, elements of set theory, real numbers, the theory of groups, group isomorphism and homomorphism, theory of rings, and polynomial rings. 1969 edition.




Basic Mathematics


Book Description




Introduction to Algebra


Book Description

This Second Edition of a classic algebra text includes updated and comprehensive introductory chapters,new material on axiom of Choice, p-groups and local rings, discussion of theory and applications, and over 300 exercises. It is an ideal introductory text for all Year 1 and 2 undergraduate students in mathematics.




Number Systems


Book Description

This book offers a rigorous and coherent introduction to the five basic number systems of mathematics, namely natural numbers, integers, rational numbers, real numbers, and complex numbers. It is a subject that many mathematicians believe should be learned by any student of mathematics including future teachers. The book starts with the development of Peano arithmetic in the first chapter which includes mathematical induction and elements of recursion theory. It proceeds to an examination of integers that also covers rings and ordered integral domains. The presentation of rational numbers includes material on ordered fields and convergence of sequences in these fields. Cauchy and Dedekind completeness properties of the field of real numbers are established, together with some properties of real continuous functions. An elementary proof of the Fundamental Theorem of Algebra is the highest point of the chapter on complex numbers. The great merit of the book lies in its extensive list of exercises following each chapter. These exercises are designed to assist the instructor and to enhance the learning experience of the students.




Introduction to Abstract Algebra


Book Description

Introduction to Abstract Algebra, Second Edition presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It avoids the usual groups first/rings first dilemma by introducing semigroups and monoids, the multiplicative structures of rings, along with groups.This new edition of a widely adopted textbook covers







Introduction to Algebraic Geometry


Book Description

This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.




Topology


Book Description

A graduate-level textbook that presents basic topology from the perspective of category theory. This graduate-level textbook on topology takes a unique approach: it reintroduces basic, point-set topology from a more modern, categorical perspective. Many graduate students are familiar with the ideas of point-set topology and they are ready to learn something new about them. Teaching the subject using category theory--a contemporary branch of mathematics that provides a way to represent abstract concepts--both deepens students' understanding of elementary topology and lays a solid foundation for future work in advanced topics.




Basic Algebra


Book Description

Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring or established. Together, the two books give the reader a global view of algebra and its role in mathematics as a whole. The presentation includes blocks of problems that introduce additional topics and applications to science and engineering to guide further study. Many examples and hundreds of problems are included, along with a separate 90-page section giving hints or complete solutions for most of the problems.




Algebra in Context


Book Description

An engaging new approach to teaching algebra that takes students on a historical journey from its roots to modern times. This book’s unique approach to the teaching of mathematics lies in its use of history to provide a framework for understanding algebra and related fields. With Algebra in Context, students will soon discover why mathematics is such a crucial part not only of civilization but also of everyday life. Even those who have avoided mathematics for years will find the historical stories both inviting and gripping. The book’s lessons begin with the creation and spread of number systems, from the mathematical development of early civilizations in Babylonia, Greece, China, Rome, Egypt, and Central America to the advancement of mathematics over time and the roles of famous figures such as Descartes and Leonardo of Pisa (Fibonacci). Before long, it becomes clear that the simple origins of algebra evolved into modern problem solving. Along the way, the language of mathematics becomes familiar, and students are gradually introduced to more challenging problems. Paced perfectly, Amy Shell-Gellasch and J. B. Thoo’s chapters ease students from topic to topic until they reach the twenty-first century. By the end of Algebra in Context, students using this textbook will be comfortable with most algebra concepts, including • Different number bases • Algebraic notation • Methods of arithmetic calculation • Real numbers • Complex numbers • Divisors • Prime factorization • Variation • Factoring • Solving linear equations • False position • Solving quadratic equations • Solving cubic equations • nth roots • Set theory • One-to-one correspondence • Infinite sets • Figurate numbers • Logarithms • Exponential growth • Interest calculations