Aromaticity


Book Description

Evaluating the aromaticity of a molecular system and the influence of this concept on its properties is a crucial step in the development of novel aromatic systems. Modern computational methods can provide researchers with a high level of insight into such aromaticity, but identifying the most appropriate method for assessing a specific system can prove difficult. Aromaticity: Modern Computational Methods and Applications reviews the latest state-of-the-art computational methods in this field and discusses their applicability for evaluating the aromaticity of a system. In addition to covering aromaticity for typical organic molecules, this volume also explores systems possessing transition metals in their structures, macrocycles and even transition structures. The influence of the aromaticity on the properties of these species (including the structure, magnetic properties and reactivity) is highlighted, along with potential applications in fields including materials science and medicinal chemistry. Finally, the controversial and fuzzy nature of aromaticity as a concept is discussed, providing the basis for an updated and more comprehensive definition of this concept. Drawing on the knowledge of an international team of experts, Aromaticity: Modern Computational Methods and Applications is a unique guide for anyone researching, studying or applying principles of aromaticity in their work, from computational and organic chemists to pharmaceutical and materials scientists. - Reviews a range of computational methods to assess the aromatic nature of different compounds, helping readers select the most useful tool for the system they are studying - Presents a complete guide to the key concepts and fundamental principles of aromaticity - Provides guidance on identifying which variables should be modified to tune the properties of an aromatic system for different potential applications




Aromaticity in Heterocyclic Compounds


Book Description

Heterocyclic chemistry is the biggest branch of chemistry covering two-thirds of the chemical literature. Aromaticity in Heterocyclic Compounds covers hot topics of frontier research summarized by reputed scientists in the field.




Aromaticity and Antiaromaticity


Book Description

Aromaticity and Antiaromaticity A comprehensive review of the science of aromaticity, as well as its evolution, from benzene to atomic clusters In Aromaticity and Antiaromaticity: Concepts and Applications, a team of accomplished chemists delivers a comprehensive exploration of the evolution and critical aspects of aromaticity. The book examines the new global criteria used to evaluate aromaticity, including the Nucleus Independent Chemical Shift (NICS) index and the electronic indices based on electronic properties. Additional discussions of inorganic aromatic compounds developed in this century, which give rise to new concepts like multifold aromaticity, are included. Three-dimensional aromaticity found in fullerenes and nanotubes, Möbius aromaticity present in some annulenes, and excited state aromaticity are explored as well. This volume explores the geometrical, electronic, magnetic, and thermodynamic characteristics of aromatic and antiaromatic compounds and their reactivity properties. It also provides: A thorough historical overview of aromaticity, as well as simple electronic and structural models Comprehensive explorations of organic and inorganic aromatic compounds, concepts of stability and reactivity, and geometric, energetic, magnetic, and electronic criteria of descriptors of aromaticity Practical discussions of heteroaromaticity, as well as Möbius aromaticity and excited state aromaticity In-depth examinations of sigma, pi, delta, and phi aromaticity Perfect for graduate students, researchers, and academics interested in aromaticity, organometallic chemistry, and computational chemistry, Aromaticity and Antiaromaticity: Concepts and Applications will also earn a place in the libraries of professionals and researchers working in organic, inorganic, and physical chemistry.




Aromaticity and Metal Clusters


Book Description

Metal clusters, an intermediate state between molecules and the extended solid, show peculiar bonding and reactivity patterns. Their significance is critical to many areas, including air pollution, interstellar matter, clay minerals, photography, catalysis, quantum dots, and virus crystals. In Aromaticity and Metal Clusters, dozens of international experts explore not only the basic aspects of aromaticity, but also the structures, properties, reactivity, stability, and other consequences of the aromaticity of a variety of metal clusters. Although the concept of aromaticity has been known for nearly two centuries, there is no way to measure it experimentally and no theoretical formula to calculate it. In order to gain insight into its exact nature, the authors of this volume examine various indirect characteristics such as geometrical, electronic, magnetic, thermodynamic, and reactivity considerations. The book begins by discussing the evolution of aromaticity from benzene to atomic clusters. Next, more specialized chapters focus on areas of significant interest. Topics discussed include: Computational studies on molecules with unusual aromaticity Electronic shells and magnetism in small metal clusters A density functional investigation on the structures, energetics, and properties of sodium clusters through electrostatic guidelines and molecular tailoring The correlation between electron delocalization and ring currents in all metallic aromatic compounds Phenomenological shell model and aromaticity in metal clusters Rationalizing the aromaticity indexes used to describe the aromatic behavior of metal clusters 5f orbital successive aromatic and antiaromatic zones in triangular uranium cluster chemistry This collection of diverse contributions, composed of the work of scientists worldwide, is destined to not only answer puzzling questions about the nature of aromaticity, but also to provoke further inquiry in the minds of researchers.




Aromaticity and Other Conjugation Effects


Book Description

The authors provide an excellent overview of conjugation effects in organic chemistry within and between Pi systems. Besides various aspects of aromaticity one finds detailed discussions of homo-, spiroand hyperconjugation as well as effects of through-space and throughbond interactions. These effects are presented on the basis of experimental results and are analyzed by the use of qualitative arguments of perturbation theory and from a comparison with results from high level ab initio calculations. This book is a must-have for bachelor students from the second year on, master and PhD students of chemistry. Also students in science such as physics, biology and medicine will benefit from the concepts described in the book. Furthermore, chemists in research and development will be grateful to find here an overview of conjugation effects allowing to understand the structures, the dynamics and the reactivity of molecules.




Aromaticity and Antiaromaticity


Book Description

Designed to assist chemists in integrating the results of calculations on molecules and ions into their general body of chemical knowledge. Contains recent contributions from theoretical and computational chemistry to the development of the concept of aromaticity (antiaromaticity) and its expansion into new areas such as organometallic and cluster compounds and three-dimensional structures. Updates the modern status of aromaticity and covers basic principles and experimental applications.




Advanced Organic Chemistry: Reactions And Mechanisms


Book Description

Advanced Organic Chemistry: Reactions and Mechanisms covers the four types of reactions -- substitution, addition, elimination and rearrangement; the three types of reagents -- nucleophiles, electrophiles and radicals; and the two effects -- electroni.







Aromaticity and Metal Clusters


Book Description

Metal clusters, an intermediate state between molecules and the extended solid, show peculiar bonding and reactivity patterns. Their significance is critical to many areas, including air pollution, interstellar matter, clay minerals, photography, catalysis, quantum dots, and virus crystals. In Aromaticity and Metal Clusters, dozens of international experts explore not only the basic aspects of aromaticity, but also the structures, properties, reactivity, stability, and other consequences of the aromaticity of a variety of metal clusters. Although the concept of aromaticity has been known for nearly two centuries, there is no way to measure it experimentally and no theoretical formula to calculate it. In order to gain insight into its exact nature, the authors of this volume examine various indirect characteristics such as geometrical, electronic, magnetic, thermodynamic, and reactivity considerations. The book begins by discussing the evolution of aromaticity from benzene to atomic clusters. Next, more specialized chapters focus on areas of significant interest. Topics discussed include: Computational studies on molecules with unusual aromaticity Electronic shells and magnetism in small metal clusters A density functional investigation on the structures, energetics, and properties of sodium clusters through electrostatic guidelines and molecular tailoring The correlation between electron delocalization and ring currents in all metallic aromatic compounds Phenomenological shell model and aromaticity in metal clusters Rationalizing the aromaticity indexes used to describe the aromatic behavior of metal clusters 5f orbital successive aromatic and antiaromatic zones in triangular uranium cluster chemistry This collection of diverse contributions, composed of the work of scientists worldwide, is destined to not only answer puzzling questions about the nature of aromaticity, but also to provoke further inquiry in the minds of researchers.




The Chemical Bond


Book Description

This is the perfect complement to "Chemical Bonding - Across the Periodic Table" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemical models and faster computers.