Artificial Intelligence for Future Generation Robotics


Book Description

Artificial Intelligence for Future Generation Robotics offers a vision for potential future robotics applications for AI technologies. Each chapter includes theory and mathematics to stimulate novel research directions based on the state-of-the-art in AI and smart robotics. Organized by application into ten chapters, this book offers a practical tool for researchers and engineers looking for new avenues and use-cases that combine AI with smart robotics. As we witness exponential growth in automation and the rapid advancement of underpinning technologies, such as ubiquitous computing, sensing, intelligent data processing, mobile computing and context aware applications, this book is an ideal resource for future innovation. - Brings AI and smart robotics into imaginative, technically-informed dialogue - Integrates fundamentals with real-world applications - Presents potential applications for AI in smart robotics by use-case - Gives detailed theory and mathematical calculations for each application - Stimulates new thinking and research in applying AI to robotics




Artificial Generation


Book Description

Artificial Generation: Photogenic French Literature and the Prehistory of Cinematic Modernity investigates the intersection of film theory and nineteenth-century literature, arguing that the depth of amalgamation that occurred within literary representation during this era aims to replicate an illusion of life and its sensations, in ways directly related to broader transitions into our modern cinematic age. A key part of this evolution in representation relies on the continual re-emergence of the artificial woman as longstanding expression of masculine artistic subjectivity, which, by the later nineteenth century, becomes a photographic and filmic drive. Moving through the beginning of film history, from Georges Méliès and other “silent” filmmakers in the 1890s, into more contemporary movies, including Alfred Hitchcock’s Vertigo (1958) and Blade Runner 2049 (2017), the book analyzes how films are often structured around the prior century’s mythic and literary principles, which now serve as foundation for film as medium—a phantom form for life’s re-presentation. Artificial Generation provides a crucial reassessment of the longstanding, mutual exchange between cinematic and literary reproduction, offering an innovative perspective on the proto-cinematic imperative of simulation within nineteenth-century literary symbolism.




Artificial Generation


Book Description

Artificial Generation: Photogenic French Literature and the Prehistory of Cinematic Modernity looks at nineteenth-century literary representation and film theory, arguing that the depth of amalgamation that occurred within literary representation during this era is a key aesthetic tradition that continues to inform movies and contemporary culture today.




Foundations of Distributed Artificial Intelligence


Book Description

Distributed Artificial Intelligence (DAI) is a dynamic area of research and this book is the first comprehensive, truly integrated exposition of the discipline presenting influential contributions from leaders in the field. Commences with a solid introduction to the theoretical and practical issues of DAI, followed by a discussion of the core research topics--communication, coordination, planning--and how they are related to each other. The third section describes a number of DAI testbeds, illustrating particular strategies commissioned to provide software environments for building and experimenting with DAI systems. The final segment contains contributions which consider DAI from different perspectives.




Artificial Maturity


Book Description

How to raise kids who can handle the real world Today's Generation iY (teens brought up with the Internet) and Homelanders (children born after 9/11) are overexposed to information at an earlier age than ever and paradoxically are underexposed to meaningful relationships and real-life experiences. Artificial Maturity addresses the problem of what to do when parents and teachers mistake children's superficial knowledge for real maturity. The book is filled with practical steps that adults can take to furnish the experiences kids need to balance their abilities with authentic maturity. Shows how to identify the problem of artificial maturity in Generation iY and Homelanders Reveals what to do to help children balance autonomy, responsibility, and information Includes a down-to-earth model for coaching and guiding youth to true maturity Artificial Maturity gives parents, teachers, and others who work with youth a manual for understanding and practicing the leadership kids so desperately need to mature in a healthy fashion.




Artificial Intelligence in Value Creation


Book Description

This book analyses various models of value creation in projects and businesses by applying different forms of Artificial Intelligence in their products and services. First presenting the main concepts and ideas behind AI, Wodecki assesses different models of technology-based value creation based upon the analysis of over 400 case studies. This framework shows how AI may influence both value creation and competitive advantage (efficiency, creativity and flexibility) within a modern organization. Finally, a conceptual model is formulated to evaluate AI-supported in-company projects and new ventures and identify the key managerial and technical competencies required.




Practical Synthetic Data Generation


Book Description

Building and testing machine learning models requires access to large and diverse data. But where can you find usable datasets without running into privacy issues? This practical book introduces techniques for generating synthetic data—fake data generated from real data—so you can perform secondary analysis to do research, understand customer behaviors, develop new products, or generate new revenue. Data scientists will learn how synthetic data generation provides a way to make such data broadly available for secondary purposes while addressing many privacy concerns. Analysts will learn the principles and steps for generating synthetic data from real datasets. And business leaders will see how synthetic data can help accelerate time to a product or solution. This book describes: Steps for generating synthetic data using multivariate normal distributions Methods for distribution fitting covering different goodness-of-fit metrics How to replicate the simple structure of original data An approach for modeling data structure to consider complex relationships Multiple approaches and metrics you can use to assess data utility How analysis performed on real data can be replicated with synthetic data Privacy implications of synthetic data and methods to assess identity disclosure




Application of Artificial Intelligence to Assessment


Book Description

The general theme of this book is to present the applications of artificial intelligence (AI) in test development. In particular, this book includes research and successful examples of using AI technology in automated item generation, automated test assembly, automated scoring, and computerized adaptive testing. By utilizing artificial intelligence, the efficiency of item development, test form construction, test delivery, and scoring could be dramatically increased. Chapters on automated item generation offer different perspectives related to generating a large number of items with controlled psychometric properties including the latest development of using machine learning methods. Automated scoring is illustrated for different types of assessments such as speaking and writing from both methodological aspects and practical considerations. Further, automated test assembly is elaborated for the conventional linear tests from both classical test theory and item response theory perspectives. Item pool design and assembly for the linear-on-the-fly tests elaborates more complications in practice when test security is a big concern. Finally, several chapters focus on computerized adaptive testing (CAT) at either item or module levels. CAT is further illustrated as an effective approach to increasing test-takers’ engagement in testing. In summary, the book includes both theoretical, methodological, and applied research and practices that serve as the foundation for future development. These chapters provide illustrations of efforts to automate the process of test development. While some of these automation processes have become common practices such as automated test assembly, automated scoring, and computerized adaptive testing, some others such as automated item generation calls for more research and exploration. When new AI methods are emerging and evolving, it is expected that researchers can expand and improve the methods for automating different steps in test development to enhance the automation features and practitioners can adopt quality automation procedures to improve assessment practices.




Synthetic Data Generation


Book Description

"Synthetic Data Generation: A Beginner’s Guide" offers an insightful exploration into the emerging field of synthetic data, essential for anyone navigating the complexities of data science, artificial intelligence, and technology innovation. This comprehensive guide demystifies synthetic data, presenting a detailed examination of its core principles, techniques, and prospective applications across diverse industries. Designed with accessibility in mind, it equips beginners and seasoned practitioners alike with the necessary knowledge to leverage synthetic data's potential effectively. Delving into the nuances of data sources, generation techniques, and evaluation metrics, this book serves as a practical roadmap for mastering synthetic data. Readers will gain a robust understanding of the advantages and limitations, ethical considerations, and privacy concerns associated with synthetic data usage. Through real-world examples and industry insights, the guide illuminates the transformative role of synthetic data in enhancing innovation while safeguarding privacy. With an eye on both present applications and future trends, "Synthetic Data Generation: A Beginner’s Guide" prepares readers to engage with the evolving challenges and opportunities in data-centric fields. Whether for academic enrichment, professional development, or as a primer for new data enthusiasts, this book stands as an essential resource in understanding and implementing synthetic data solutions.




Robot-Proof, revised and updated edition


Book Description

A fresh look at a “robot-proof” education in the new age of generative AI. In 2017, Robot-Proof, the first edition, foresaw the advent of the AI economy and called for a new model of higher education designed to help human beings flourish alongside smart machines. That economy has arrived. Creative tasks that, seven years ago, seemed resistant to automation can now be performed with a simple prompt. As a result, we must now learn not only to be conversant with these technologies, but also to comprehend and deploy their outputs. In this revised and updated edition, Joseph Aoun rethinks the university’s mission for a world transformed by AI, advocating for the lifelong endeavor of a “robot-proof” education. Aoun puts forth a framework for a new curriculum, humanics, which integrates technological, data, and human literacies in an experiential setting, and he renews the call for universities to embrace lifelong learning through a social compact with government, employers, and learners themselves. Drawing on the latest developments and debates around generative AI, Robot-Proof is a blueprint for the university as a force for human reinvention in an era of technological change—an era in which we must constantly renegotiate the shifting boundaries between artificial intelligence and the capacities that remain uniquely human.