Artificial Intelligence-Based Brain-Computer Interface


Book Description

Artificial Intelligence-Based Brain Computer Interface provides concepts of AI for the modeling of non-invasive modalities of medical signals such as EEG, MRI and FMRI. These modalities and their AI-based analysis are employed in BCI and related applications. The book emphasizes the real challenges in non-invasive input due to the complex nature of the human brain and for a variety of applications for analysis, classification and identification of different mental states. Each chapter starts with a description of a non-invasive input example and the need and motivation of the associated AI methods, along with discussions to connect the technology through BCI. Major topics include different AI methods/techniques such as Deep Neural Networks and Machine Learning algorithms for different non-invasive modalities such as EEG, MRI, FMRI for improving the diagnosis and prognosis of numerous disorders of the nervous system, cardiovascular system, musculoskeletal system, respiratory system and various organs of the body. The book also covers applications of AI in the management of chronic conditions, databases, and in the delivery of health services. - Provides readers with an understanding of key applications of Artificial Intelligence to Brain-Computer Interface for acquisition and modelling of non-invasive biomedical signal and image modalities for various conditions and disorders - Integrates recent advancements of Artificial Intelligence to the evaluation of large amounts of clinical data for the early detection of disorders such as Epilepsy, Alcoholism, Sleep Apnea, motor-imagery tasks classification, and others - Includes illustrative examples on how Artificial Intelligence can be applied to the Brain-Computer Interface, including a wide range of case studies in predicting and classification of neurological disorders




Brain-Computer Interfaces 1


Book Description

Brain–computer interfaces (BCI) are devices which measure brain activity and translate it into messages or commands, thereby opening up many investigation and application possibilities. This book provides keys for understanding and designing these multi-disciplinary interfaces, which require many fields of expertise such as neuroscience, statistics, informatics and psychology. This first volume, Methods and Perspectives, presents all the basic knowledge underlying the working principles of BCI. It opens with the anatomical and physiological organization of the brain, followed by the brain activity involved in BCI, and following with information extraction, which involves signal processing and machine learning methods. BCI usage is then described, from the angle of human learning and human-machine interfaces. The basic notions developed in this reference book are intended to be accessible to all readers interested in BCI, whatever their background. More advanced material is also offered, for readers who want to expand their knowledge in disciplinary fields underlying BCI. This first volume will be followed by a second volume, entitled Technology and Applications.




Deep Learning For Eeg-based Brain-computer Interfaces: Representations, Algorithms And Applications


Book Description

Deep Learning for EEG-Based Brain-Computer Interfaces is an exciting book that describes how emerging deep learning improves the future development of Brain-Computer Interfaces (BCI) in terms of representations, algorithms and applications. BCI bridges humanity's neural world and the physical world by decoding an individuals' brain signals into commands recognizable by computer devices.This book presents a highly comprehensive summary of commonly-used brain signals; a systematic introduction of around 12 subcategories of deep learning models; a mind-expanding summary of 200+ state-of-the-art studies adopting deep learning in BCI areas; an overview of a number of BCI applications and how deep learning contributes, along with 31 public BCI data sets. The authors also introduce a set of novel deep learning algorithms aimed at current BCI challenges such as robust representation learning, cross-scenario classification, and semi-supervised learning. Various real-world deep learning-based BCI applications are proposed and some prototypes are presented. The work contained within proposes effective and efficient models which will provide inspiration for people in academia and industry who work on BCI.Related Link(s)




Brain-Computer Interfacing


Book Description

The idea of interfacing minds with machines has long captured the human imagination. Recent advances in neuroscience and engineering are making this a reality, opening the door to restoration and augmentation of human physical and mental capabilities. Medical applications such as cochlear implants for the deaf and neurally controlled prosthetic limbs for the paralyzed are becoming almost commonplace. Brain-computer interfaces (BCIs) are also increasingly being used in security, lie detection, alertness monitoring, telepresence, gaming, education, art, and human augmentation. This introduction to the field is designed as a textbook for upper-level undergraduate and first-year graduate courses in neural engineering or brain-computer interfacing for students from a wide range of disciplines. It can also be used for self-study and as a reference by neuroscientists, computer scientists, engineers, and medical practitioners. Key features include questions and exercises in each chapter and a supporting website.




Signal Processing and Machine Learning for Brain-Machine Interfaces


Book Description

Brain-machine interfacing or brain-computer interfacing (BMI/BCI) is an emerging and challenging technology used in engineering and neuroscience. The ultimate goal is to provide a pathway from the brain to the external world via mapping, assisting, augmenting or repairing human cognitive or sensory-motor functions.




Compassionate Artificial Intelligence


Book Description

In this book Dr. Amit Ray describes the principles, algorithms and frameworks for incorporating compassion, kindness and empathy in machine. This is a milestone book on Artificial Intelligence. Compassionate AI address the issues for creating solutions for some of the challenges the humanity is facing today, like the need for compassionate care-giving, helping physically and mentally challenged people, reducing human pain and diseases, stopping nuclear warfare, preventing mass destruction weapons, tackling terrorism and stopping the exploitation of innocent citizens by monster governments through digital surveillance. The book also talks about compassionate AI for precision medicine, new drug discovery, education, and legal system. Dr. Ray explained the DeepCompassion algorithms, five design principles and eleven key behavioral principle of compassionate AI systems. The book also explained several compassionate AI projects. Compassionate AI is the best practical guide for AI students, researchers, entrepreneurs, business leaders looking to get true value from the adoption of compassion in machine learning technology.




Brain-Computer Interfaces


Book Description

The success of a BCI system depends as much on the system itself as on the user’s ability to produce distinctive EEG activity. BCI systems can be divided into two groups according to the placement of the electrodes used to detect and measure neurons firing in the brain. These groups are: invasive systems, electrodes are inserted directly into the cortex are used for single cell or multi unit recording, and electrocorticography (EcoG), electrodes are placed on the surface of the cortex (or dura); noninvasive systems, they are placed on the scalp and use electroencephalography (EEG) or magnetoencephalography (MEG) to detect neuron activity. The book is basically divided into three parts. The first part of the book covers the basic concepts and overviews of Brain Computer Interface. The second part describes new theoretical developments of BCI systems. The third part covers views on real applications of BCI systems.




Brain-Computer Interfaces for Human Augmentation


Book Description

The field of Brain–Computer Interfaces (BCIs) has grown rapidly in the last few decades, allowing the development of faster and more reliable assistive technologies based on direct links between the brain and an external device. Novel applications of BCIs have also been proposed, especially in the area of human augmentation, i.e., enabling people to go beyond human limitations in sensory, cognitive and motor tasks. Brain-imaging techniques, such as electroencephalography, have been used to extract neural correlates of various brain processes and transform them, via machine learning, into commands for external devices. Brain stimulation technology has allowed to trigger the activation of specific brain areas to enhance the cognitive processes associated to the task at hand, hence improving performance. BCIs have therefore extended their scope from assistive technologies for people with disabilities to neuro-tools for human enhancement. This Special Issue aims at showing the recent advances in BCIs for human augmentation, highlighting new results on both traditional and novel applications. These include, but are not limited to, control of external devices, communication, cognitive enhancement, decision making and entertainment.




Cyborg Mind


Book Description

With the development of new direct interfaces between the human brain and computer systems, the time has come for an in-depth ethical examination of the way these neuronal interfaces may support an interaction between the mind and cyberspace. In so doing, this book does not hesitate to blend disciplines including neurobiology, philosophy, anthropology and politics. It also invites society, as a whole, to seek a path in the use of these interfaces enabling humanity to prosper while avoiding the relevant risks. As such, the volume is the first extensive study in cyberneuroethics, a subject matter which is certain to have a significant impact in the 21st century and beyond.




Brain-Computer Interfaces


Book Description

For generations, humans have fantasized about the ability to create devices that can see into a person’s mind and thoughts, or to communicate and interact with machines through thought alone. Such ideas have long captured the imagination of humankind in the form of ancient myths and modern science fiction stories. Recent advances in cognitive neuroscience and brain imaging technologies have started to turn these myths into a reality, and are providing us with the ability to interface directly with the human brain. This ability is made possible through the use of sensors that monitor physical processes within the brain which correspond with certain forms of thought. Brain-Computer Interfaces: Applying our Minds to Human-Computer Interaction broadly surveys research in the Brain-Computer Interface domain. More specifically, each chapter articulates some of the challenges and opportunities for using brain sensing in Human-Computer Interaction work, as well as applying Human-Computer Interaction solutions to brain sensing work. For researchers with little or no expertise in neuroscience or brain sensing, the book provides background information to equip them to not only appreciate the state-of-the-art, but also ideally to engage in novel research. For expert Brain-Computer Interface researchers, the book introduces ideas that can help in the quest to interpret intentional brain control and develop the ultimate input device. It challenges researchers to further explore passive brain sensing to evaluate interfaces and feed into adaptive computing systems. Most importantly, the book will connect multiple communities allowing research to leverage their work and expertise and blaze into the future.