Artificial Intelligence in Breast Cancer Early Detection and Diagnosis


Book Description

This book provides an introduction to next generation smart screening technology for medical image analysis that combines artificial intelligence (AI) techniques with digital screening to develop innovative methods for detecting breast cancer. The authors begin with a discussion of breast cancer, its characteristics and symptoms, and the importance of early screening.They then provide insight on the role of artificial intelligence in global healthcare, screening methods for breast cancer using mammogram, ultrasound, and thermogram images, and the potential benefits of using AI-based systems for clinical screening to more accurately detect, diagnose, and treat breast cancer. Discusses various existing screening methods for breast cancer Presents deep information on artificial intelligence-based screening methods Discusses cancer treatment based on geographical differences and cultural characteristics




Artificial Intelligence in Breast Cancer Early Detection and Diagnosis


Book Description

This book provides an introduction to next generation smart screening technology for medical image analysis that combines artificial intelligence (AI) techniques with digital screening to develop innovative methods for detecting breast cancer. The authors begin with a discussion of breast cancer, its characteristics and symptoms, and the importance of early screening.They then provide insight on the role of artificial intelligence in global healthcare, screening methods for breast cancer using mammogram, ultrasound, and thermogram images, and the potential benefits of using AI-based systems for clinical screening to more accurately detect, diagnose, and treat breast cancer. Discusses various existing screening methods for breast cancer Presents deep information on artificial intelligence-based screening methods Discusses cancer treatment based on geographical differences and cultural characteristics




Artificial Intelligence in Breast Cancer Early Detection and Diagnosis


Book Description

This book provides an introduction to next generation smart screening technology for medical image analysis that combines artificial intelligence (AI) techniques with digital screening to develop innovative methods for detecting breast cancer. The authors begin with a discussion of breast cancer, its characteristics and symptoms, and the importance of early screening.They then provide insight on the role of artificial intelligence in global healthcare, screening methods for breast cancer using mammogram, ultrasound, and thermogram images, and the potential benefits of using AI-based systems for clinical screening to more accurately detect, diagnose, and treat breast cancer. Discusses various existing screening methods for breast cancer Presents deep information on artificial intelligence-based screening methods Discusses cancer treatment based on geographical differences and cultural characteristics.




Breast Cancer Screening and Diagnosis


Book Description

This book presents the current trends and practices in breast imaging. Topics include mammographic interpretation; breast ultrasound; breast MRI; management of the symptomatic breast in young, pregnant and lactating women; breast intervention with imaging pathological correlation; the postoperative breast and current and emerging technologies in breast imaging. It emphasizes the importance of fostering a multidisciplinary approach in the diagnosis and treatment of breast diseases. Featuring more than 800 high-resolution images and showcasing contributions from leading authorities in the screening, diagnosis and management of the breast cancer patient, Breast Cancer Screening and Diagnosis is a valuable resource for radiologists, oncologists and surgeons.




Breast Imaging


Book Description

Breast Imaging presents a comprehensive review of the subject matter commonly encountered by practicing radiologists and radiology residents in training. This volume includes succinct overviews of breast cancer epidemiology, screening, staging, and treatment; overviews of all imaging modalities including mammography, tomosynthesis, ultrasound, and MRI; step-by-step approaches for image-guided breast interventions; and high-yield chapters organized by specific imaging finding seen on mammography, tomosynthesis, ultrasound, and MRI. Part of the Rotations in Radiology series, this book offers a guided approach to breast imaging interpretation and techniques, highlighting the nuances necessary to arrive at the best diagnosis and management. Each chapter contains a targeted discussion of an imaging finding which reviews the anatomy and physiology, distinguishing features, imaging techniques, differential diagnosis, clinical issues, key points, and further reading. Breast Imaging is a must-read for residents and practicing radiologists seeking a foundation for the essential knowledge base in breast imaging.




Digital Breast Tomosynthesis


Book Description

This book provides a comprehensive description of the screening and clinical applications of digital breast tomosynthesis (DBT) and offers straightforward, clear guidance on use of the technique. Informative clinical cases are presented to illustrate how to take advantage of DBT in clinical practice. The importance of DBT as a diagnostic tool for both screening and diagnosis is increasing rapidly. DBT improves upon mammography by depicting breast tissue on a video clip made of cross‐sectional images reconstructed in correspondence with their mammographic planes of acquisition. DBT results in markedly reduced summation of overlapping breast tissue and offers the potential to improve mammographic breast cancer surveillance and diagnosis. This book will be an excellent practical teaching guide for beginners and a useful reference for more experienced radiologists.




Biomedical Computing for Breast Cancer Detection and Diagnosis


Book Description

Despite success with treatment when diagnosed early, breast cancer is still one of the most fatal forms of cancer for women. Imaging diagnosis is still one of the most efficient ways to detect early breast changes with mammography among the most used techniques. However, there are other techniques that have emerged as alternatives or even complementary tests in the early detection of breast lesions (e.g., breast thermography and electrical impedance tomography). Artificial intelligence can be used to optimize image diagnosis, increasing the reliability of the reports and supporting professionals who do not have enough knowledge or experience to make good diagnoses. Biomedical Computing for Breast Cancer Detection and Diagnosis is a collection of research that presents a review of the physiology and anatomy of the breast; the dynamics of breast cancer; principles of pattern recognition, artificial neural networks, and computer graphics; and the breast imaging techniques and computational methods to support and optimize the diagnosis. While highlighting topics including mammograms, thermographic imaging, and intelligent systems, this book is ideally designed for medical oncologists, surgeons, biomedical engineers, medical imaging professionals, cancer researchers, academicians, and students in medicine, biomedicine, biomedical engineering, and computer science.




Early Detection of Breast Cancer


Book Description

The enormous expansion seen over the last decade in the mammo graphic detection of breast cancer lesions, especially the use of screen ing procedures for the early detection of clinically unsuspected tumors, has made it necessary to summarize the experience made by various centers in the world. The 2nd International Copenhagen Symposium on Detection of Breast Cancer afforded an opportunity of gathering scientists from all over the world to discuss the various problems of early breast cancer detection with special reference to screening procedures. This book forms a synthesis of the information presented by leading scientists from many of the world's mammo graphic centers, particularly those in Sweden and the USA. Hence, the reader will have the opportunity to study the outstanding work carried out by various institutes and centers of breast cancer screening. It is our sincere hope that a study of this volume will encourage other scientists to join in the work on screening procedures. S. Brunner B. Langfeldt P. E. Andersen Contents S. A. Feig: 1 Hypothetical Breast Cancer Risk from Mammography S. A. Feig: Benefits and Risks of Mammography 11 R. L. Egan and M. B. McSweeney: Multicentric Breast Carcinoma . . . . . . . . . . . . . . . . . . . . . . . . 28 M. B. McSweeney and R. L. Egan: Breast Cancer in the Younger Patient: A Preliminary Report 36 M. B. McSweeney and R. L. Egan: Bilateral Breast Carcinoma . . . . . . . . . . . . . . . . . . . . . . . . . . . ' 41 N. Bjurstam: The Radiographic Appearance of Normal and Metastatic Axillary Lymph Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 M. Moskowitz, S. A. Feig, C. Cole-Beuglet, S. H.




Data Analytics in Bioinformatics


Book Description

Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.




Artificial Intelligence Techniques In Breast Cancer Diagnosis And Prognosis


Book Description

The main aim of this book is to present a sample of recent research on the application of novel artificial intelligence paradigms to the diagnosis and prognosis of breast cancer. These paradigms include neural networks, fuzzy logic and evolutionary computing. Artificial intelligence techniques offer advantages — such as adaptation, fault tolerance, learning and human-like behavior — over conventional computing techniques. The idea is to combine the pathological, intelligent and statistical approaches to enable simple and accurate diagnosis and prognosis.This book is the first of its kind on the topic of artificial intelligence in breast cancer. It presents the applications of artificial intelligence in breast cancer diagnosis and prognosis, and includes state-of-the-art concepts in the field. It contains contributions from Australia, Germany, Italy, UK and the USA.