Artificial Intelligence in the Age of Neural Networks and Brain Computing


Book Description

Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks




Human Brain and Artificial Intelligence


Book Description

This book constitutes the refereed proceedings of the workshop held in conjunction with the 28th International Conference on Artificial Intelligence, IJCAI 2019, held in Macao, China, in August 2019: the First International Workshop on Human Brain and Artificial Intelligence, HBAI 2019. The 24 full papers presented were carefully reviewed and selected from 62 submissions. The papers are organized according to the following topical headings: computational brain science and its applications; brain-inspired artificial intelligence and its applications.




Handbook of Evolutionary Machine Learning


Book Description

This book, written by leading international researchers of evolutionary approaches to machine learning, explores various ways evolution can address machine learning problems and improve current methods of machine learning. Topics in this book are organized into five parts. The first part introduces some fundamental concepts and overviews of evolutionary approaches to the three different classes of learning employed in machine learning. The second addresses the use of evolutionary computation as a machine learning technique describing methodologic improvements for evolutionary clustering, classification, regression, and ensemble learning. The third part explores the connection between evolution and neural networks, in particular the connection to deep learning, generative and adversarial models as well as the exciting potential of evolution with large language models. The fourth part focuses on the use of evolutionary computation for supporting machine learning methods. This includes methodological developments for evolutionary data preparation, model parametrization, design, and validation. The final part covers several chapters on applications in medicine, robotics, science, finance, and other disciplines. Readers find reviews of application areas and can discover large-scale, real-world applications of evolutionary machine learning to a variety of problem domains. This book will serve as an essential reference for researchers, postgraduate students, practitioners in industry and all those interested in evolutionary approaches to machine learning.




AI and IoT for Sustainable Development in Emerging Countries


Book Description

This book comprises a number of state-of-the-art contributions from both scientists and practitioners working in a large pool of fields where AI and IoT can open up new horizons. Artificial intelligence and Internet of Things have introduced themselves today as must-have technologies in almost every sector. Ranging from agriculture to industry and health care, the scope of applications of AI and IoT is as wide as the horizon. Nowadays, these technologies are extensively used in developed countries, but they are still at an early stage in emerging countries. AI and IoT for Sustainable Development in Emerging Countries—Challenges and Opportunities is an invaluable source to dive into the latest applications of AI and IoT and how they have been used by researchers from emerging countries to solve sustainable development-related issues by taking into consideration the specifities of their countries. This book starts by presenting how AI and IoT can tackle the challenges of sustainable development in general and then focuses on the following axes: · AI and IoT for smart environment and energy · Industry 4.0 and intelligent transportation · A vision towards an artificial intelligence of medical things · AI, social media, and big data analytics. It aspires to provide a relevant reference for students, researchers, engineers, and professionals working in these particular areas or those interested in grasping its diverse facets and exploring the latest advances on their respective fields and the role of AI and IoT in them.




Conscious Mind, Resonant Brain


Book Description

How does your mind work? How does your brain give rise to your mind? These are questions that all of us have wondered about at some point in our lives, if only because everything that we know is experienced in our minds. They are also very hard questions to answer. After all, how can a mind understand itself? How can you understand something as complex as the tool that is being used to understand it? This book provides an introductory and self-contained description of some of the exciting answers to these questions that modern theories of mind and brain have recently proposed. Stephen Grossberg is broadly acknowledged to be the most important pioneer and current research leader who has, for the past 50 years, modelled how brains give rise to minds, notably how neural circuits in multiple brain regions interact together to generate psychological functions. This research has led to a unified understanding of how, where, and why our brains can consciously see, hear, feel, and know about the world, and effectively plan and act within it. The work embodies revolutionary Principia of Mind that clarify how autonomous adaptive intelligence is achieved. It provides mechanistic explanations of multiple mental disorders, including symptoms of Alzheimer's disease, autism, amnesia, and sleep disorders; biological bases of morality and religion, including why our brains are biased towards the good so that values are not purely relative; perplexing aspects of the human condition, including why many decisions are irrational and self-defeating despite evolution's selection of adaptive behaviors; and solutions to large-scale problems in machine learning, technology, and Artificial Intelligence that provide a blueprint for autonomously intelligent algorithms and robots. Because brains embody a universal developmental code, unifying insights also emerge about shared laws that are found in all living cellular tissues, from the most primitive to the most advanced, notably how the laws governing networks of interacting cells support developmental and learning processes in all species. The fundamental brain design principles of complementarity, uncertainty, and resonance that Grossberg has discovered also reflect laws of the physical world with which our brains ceaselessly interact, and which enable our brains to incrementally learn to understand those laws, thereby enabling humans to understand the world scientifically. Accessibly written, and lavishly illustrated, Conscious Mind/Resonant Brain is the magnum opus of one of the most influential scientists of the past 50 years, and will appeal to a broad readership across the sciences and humanities.




Machine Learning for Intelligent Multimedia Analytics


Book Description

This book presents applications of machine learning techniques in processing multimedia large-scale data. Multimedia such as text, image, audio, video, and graphics stands as one of the most demanding and exciting aspects of the information era. The book discusses new challenges faced by researchers in dealing with these large-scale data and also presents innovative solutions to address several potential research problems, e.g., enabling comprehensive visual classification to fill the semantic gap by exploring large-scale data, offering a promising frontier for detailed multimedia understanding, as well as extract patterns and making effective decisions by analyzing the large collection of data.




Approximate Computing Techniques


Book Description

This book serves as a single-source reference to the latest advances in Approximate Computing (AxC), a promising technique for increasing performance or reducing the cost and power consumption of a computing system. The authors discuss the different AxC design and validation techniques, and their integration. They also describe real AxC applications, spanning from mobile to high performance computing and also safety-critical applications.




Artificial Intelligence in Medical Imaging


Book Description

This book, written by authors with more than a decade of experience in the design and development of artificial intelligence (AI) systems in medical imaging, will guide readers in the understanding of one of the most exciting fields today. After an introductory description of classical machine learning techniques, the fundamentals of deep learning are explained in a simple yet comprehensive manner. The book then proceeds with a historical perspective of how medical AI developed in time, detailing which applications triumphed and which failed, from the era of computer aided detection systems on to the current cutting-edge applications in deep learning today, which are starting to exhibit on-par performance with clinical experts. In the last section, the book offers a view on the complexity of the validation of artificial intelligence applications for commercial use, describing the recently introduced concept of software as a medical device, as well as good practices and relevant considerations for training and testing machine learning systems for medical use. Open problematics on the validation for public use of systems which by nature continuously evolve through new data is also explored. The book will be of interest to graduate students in medical physics, biomedical engineering and computer science, in addition to researchers and medical professionals operating in the medical imaging domain, who wish to better understand these technologies and the future of the field. Features: An accessible yet detailed overview of the field Explores a hot and growing topic Provides an interdisciplinary perspective




Foundations of Artificial Intelligence in Healthcare and Bioscience


Book Description

Foundational Handbook of Artificial Intelligence in Healthcare and Bioscience: A User Friendly Guide for IT Professionals, Healthcare Providers, Researchers, and Clinicians uses color-coded illustrations to explain AI from its basics to modern technologies. Other sections cover extensive, current literature research and citations regarding AI's role in the business and clinical aspects of health care. The book provides readers with a unique opportunity to appreciate AI technology in practical terms, understand its applications, and realize its profound influence on the clinical and business aspects of health care. Artificial Intelligence is a disruptive technology that is having a profound and growing influence on the business of health care as well as medical diagnosis, treatment, research and clinical delivery. The AI relationships in health care are complex, but understandable, especially when discussed and developed from their foundational elements through to their practical applications in health care. - Provides an illustrated, foundational guide and comprehensive descriptions of what Artificial Intelligence is and how it functions - Integrates a comprehensive discussion of AI applications in the business of health care - Presents in-depth clinical and AI-related discussions on diagnostic medicine, therapeutic medicine, and prevalent disease categories with an emphasis on immunology and genetics, the two categories most influenced by AI - Includes comprehensive coverage of a variety of AI treatment applications, including medical/pharmaceutical care, nursing care, stem cell therapies, robotics, and 10 common disease categories with AI applications




Bio-inspired Computing: Theories and Applications


Book Description

​This two-volume set (CCIS 1159 and CCIS 1160) constitutes the proceedings of the 14th International Conference on Bio-inspired Computing: Theories and Applications, BIC-TA 2019, held in Zhengzhou, China, in November 2019. The 121 full papers presented in both volumes were selected from 197 submissions. The papers are organized according to the topical headings: evolutionary computation and swarm intelligence; ​bioinformatics and systems biology; complex networks; DNA and molecular computing; neural networks and articial intelligence.