Sedimentary Petrography


Book Description

With more than 192 full-color illustrations, this atlas permits virtually first-hand observations through a petrographic microscope of the most important and representative classes of sedimentary rock. Nine major sedimentary rock groups, such as sandstones, rudaceous rock, argillaceous rock, volcaniclastic rock, dolomites, siliceous rock, phosphorites, ironstones, and evaporites. An indispensable reference for professional geologists and undergraduate and graduate students enrolled in sedimentary petrology or petrography courses.




Essentials of Paleomagnetism


Book Description

"This book by Lisa Tauxe and others is a marvelous tool for education and research in Paleomagnetism. Many students in the U.S. and around the world will welcome this publication, which was previously only available via the Internet. Professor Tauxe has performed a service for teaching and research that is utterly unique."—Neil D. Opdyke, University of Florida




Ash-flow Tuffs


Book Description

A study of the emplacement, by flowage, of hot gas-emitting volcanic ash; its induration by welding and crystallization, and criteria for recognizing the resulting rock.







Methods for Geochemical Analysis


Book Description

Analytical methods used in the Geologic Division laboratories of the U.S. Geological Survey for the inorganic chemical analysis of rock and mineral samples.







Volcanoes


Book Description

Volcanoes are essential elements in the delicate global balance of elemental forces that govern both the dynamic evolution of the Earth and the nature of Life itself. Without volcanic activity, life as we know it would not exist on our planet. Although beautiful to behold, volcanoes are also potentially destructive, and understanding their nature is critical to prevent major loss of life in the future. Richly illustrated with over 300 original color photographs and diagrams the book is written in an informal manner, with minimum use of jargon, and relies heavily on first-person, eye-witness accounts of eruptive activity at both "red" (effusive) and "grey" (explosive) volcanoes to illustrate the full spectrum of volcanic processes and their products. Decades of teaching in university classrooms and fieldwork on active volcanoes throughout the world have provided the authors with unique experiences that they have distilled into a highly readable textbook of lasting value. Questions for Thought, Study, and Discussion, Suggestions for Further Reading, and a comprehensive list of source references make this work a major resource for further study of volcanology. Volcanoes maintains three core foci: Global perspectives explain volcanoes in terms of their tectonic positions on Earth and their roles in earth history Environmental perspectives describe the essential role of volcanism in the moderation of terrestrial climate and atmosphere Humanitarian perspectives discuss the major influences of volcanoes on human societies. This latter is especially important as resource scarcities and environmental issues loom over our world, and as increasing numbers of people are threatened by volcanic hazards Readership Volcanologists, advanced undergraduate, and graduate students in earth science and related degree courses, and volcano enthusiasts worldwide. A companion website is also available for this title at www.wiley.com/go/lockwood/volcanoes




The Use of Palaeomagnetism and Rock Magnetism to Understand Volcanic Processes


Book Description

This volume provides a synopsis of current research on volcanic processes, as gained through the use of palaeomagnetic and rock magnetic techniques. Thermoremanent magnetization information provides a powerful means of deciphering thermal processes in volcanic deposits, including estimating the emplacement temperature of pyroclastic deposits, which allows us to understand better the rates of cooling during eruption and transport. Anisotropy of magnetic susceptibility and anisotropy of remanence are used primarily to investigate rock fabrics and to quantify flow dynamics in dykes, lava flows, and pyroclastic deposits, as well as identify vent locations. Rock-magnetic characteristics allow correlation of volcanic deposits, but also provide means to date volcanic deposits and to understand better their cooling history. Because lava flows are typically good recorders of past magnetic fields, data from them allow understanding of changes in geomagnetic field directions and intensity, providing clues on the origin of Earth’s magnetic field.