The Little Book of String Theory


Book Description

The essential beginner's guide to string theory The Little Book of String Theory offers a short, accessible, and entertaining introduction to one of the most talked-about areas of physics today. String theory has been called the "theory of everything." It seeks to describe all the fundamental forces of nature. It encompasses gravity and quantum mechanics in one unifying theory. But it is unproven and fraught with controversy. After reading this book, you'll be able to draw your own conclusions about string theory. Steve Gubser begins by explaining Einstein's famous equation E = mc2, quantum mechanics, and black holes. He then gives readers a crash course in string theory and the core ideas behind it. In plain English and with a minimum of mathematics, Gubser covers strings, branes, string dualities, extra dimensions, curved spacetime, quantum fluctuations, symmetry, and supersymmetry. He describes efforts to link string theory to experimental physics and uses analogies that nonscientists can understand. How does Chopin's Fantasie-Impromptu relate to quantum mechanics? What would it be like to fall into a black hole? Why is dancing a waltz similar to contemplating a string duality? Find out in the pages of this book. The Little Book of String Theory is the essential, most up-to-date beginner's guide to this elegant, multidimensional field of physics.




String Theory and M-Theory


Book Description

String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at www.cambridge.org/9780521860697.




Basic Concepts of String Theory


Book Description

The purpose of this book is to thoroughly prepare the reader for research in string theory at an intermediate level. As such it is not a compendium of results but intended as textbook in the sense that most of the material is organized in a pedagogical and self-contained fashion. Beyond the basics, a number of more advanced topics are introduced, such as conformal field theory, superstrings and string dualities - the text does not cover applications to black hole physics and cosmology, nor strings theory at finite temperatures. End-of-chapter references have been added to guide the reader wishing to pursue further studies or to start research in well-defined topics covered by this book.




The Emergence of Spacetime in String Theory


Book Description

The nature of space and time is one of the most fascinating and fundamental philosophical issues which presently engages at the deepest level with physics. During the last thirty years this notion has been object of an intense critical review in the light of new scientific theories which try to combine the principles of both general relativity and quantum theory—called theories of quantum gravity. This book considers the way string theory shapes its own account of spacetime disappearance from the fundamental level.




String Theory For Dummies


Book Description

A clear, plain-English guide to this complex scientific theory String theory is the hottest topic in physics right now, with books on the subject (pro and con) flying out of the stores. String Theory For Dummies offers an accessible introduction to this highly mathematical "theory of everything," which posits ten or more dimensions in an attempt to explain the basic nature of matter and energy. Written for both students and people interested in science, this guide explains concepts, discusses the string theory's hypotheses and predictions, and presents the math in an approachable manner. It features in-depth examples and an easy-to-understand style so that readers can understand this controversial, cutting-edge theory.




Gauge/Gravity Duality


Book Description

The first textbook on this important topic, for graduate students and researchers in particle and condensed matter physics.




Duality Symmetry


Book Description

Symmetry is one of the most general concepts in physics. Symmetry arguments are used to explain and predict observations at all length scales, from elementary particles to cosmology. The generality of symmetry arguments, combined with their simplicity, makes them a powerful tool for both fundamental and applied investigations. In electrodynamics, one of the symmetries is the invariance of the equations under exchange of electric and magnetic quantities. The continuous version of this symmetry is most commonly known as electromagnetic duality symmetry. This concept has been accepted for more than a century, and, throughout this time, has influenced other areas of physics, like high energy physics and gravitation. This Special Issue is devoted to electromagnetic duality symmetry and other vareities of dualities in physics. It contains four Articles, one Review and one Perspective. The context of the contributions ranges from string theory to applied nanophotonics, which, as anticipated, shows that duality symmetries in general and electromagnetic duality symmetry in particular are useful in a wide variety of physics fields, both theoretical and applied. Moreover, a number of the contributions show how the use of symmetry arguments and the quantification of symmetry breaking can successfully guide our theoretical understanding and provide us with guidelines for system design.




A Brief History of String Theory


Book Description

During its forty year lifespan, string theory has always had the power to divide, being called both a 'theory of everything' and a 'theory of nothing'. Critics have even questioned whether it qualifies as a scientific theory at all. This book adopts an objective stance, standing back from the question of the truth or falsity of string theory and instead focusing on how it came to be and how it came to occupy its present position in physics. An unexpectedly rich history is revealed, with deep connections to our most well-established physical theories. Fully self-contained and written in a lively fashion, the book will appeal to a wide variety of readers from novice to specialist.




Introduction to Strings and Branes


Book Description

Detailed, step-by-step introduction to the theoretical foundations of strings and branes, essential reading for graduate students and researchers.




Strings, Branes and Gravity


Book Description

Many of the topics in this book are outgrowths of the spectacular new understanding of duality in string theory which emerged around 1995. They include the AdS/CFT correspondence and its relation to holography, the matrix theory formulation of M theory, the structure of black holes in string theory, the structure of D-branes and M-branes, and detailed development of dualities with N = 1 and N = 2 supersymmetry. In addition, there are lectures covering experimental and phenomenological aspects of the Standard Model and its extensions, and discussions on cosmology including both theoretical aspects and the exciting new experimental evidence for a non-zero cosmological constant. Contents: TASI Lectures on Branes, Black Holes and Anti-De Sitter Space (M J Duff); D-Brane Primer (C V Johnson); TASI Lectures on Black Holes in String Theory (A W Peet); TASI Lectures: Cosmology for String Theorists (S M Carroll); TASI Lectures on Matrix Theory (T Banks); TASI Lectures on M Theory Phenomenology (M Dine); TASI Lectures: Introduction to the AdS/CFT Correspondence (I R Klebanov); TASI Lectures on Compactification and Duality (D R Morrison); Compactification, Geometry and Duality: N =2 (P S Aspinwall); TASI Lectures on Non-BPS D-Brane Systems (J H Schwarz); Lectures on Warped Compactifications and Stringy Brane Constructions (S Kachru); TASI Lectures on the Holographic Principle (D Bigatti & L Susskind). Readership: Graduate students, postdoctoral fellows and researchers in high energy physics.