Assay Development


Book Description

Essential principles and practice of assay development The first comprehensive, integrated treatment of the subject, Assay Development: Fundamentals and Practices covers the essentials and techniques involved in carrying out an assay project in either a biotechnology/drug discovery setting or a platform setting. Rather than attempting comprehensive coverage of all assay development technologies, the book introduces the most widely used assay development technologies and illustrates the art of assay development through a few commonly encountered biological targets in assay development (e.g., proteases, kinases, ion channels, and G protein-coupled receptors). Just enough biological background for these biological targets is provided so that the reader can follow the logics of assay development. Chapters discuss: The basics of assay development, including foundational concepts and applications Commonly used instrumental methods for both biochemical assays and cell-based assays Assay strategies for protein binding and enzymatic activity Cell-based assays High-throughput screening An in-depth study of the now popular Caliper's off-chip kinase assay provides an instructive, real-world example of the assay development process.




A Practical Guide to Assay Development and High-Throughput Screening in Drug Discovery


Book Description

The development of suitable assays, the integration of appropriate technology, and the effective management of the essential infrastructure are all critical to the success of any high-throughput screening (HTS) endeavor. However, few scientists have the multidisciplinary experience needed to control all aspects of an HTS drug discovery project. A Practical Guide to Assay Development and High-Throughput Screening in Drug Discovery integrates the experience of diverse experts who offer fundamental and practical guidance across numerous situations. The book first discusses assay developments for important target classes such as protein kinases and phosphatases, proteases, nuclear receptors, G protein-coupled receptors, ion channels, and heat shock proteins. It next examines assay developments for cell viability, apoptosis, and infectious diseases. The contributors explore the application of emerging technologies and systems, including image-based high content screening, RNA interference, and primary cells. Finally, they discuss the essential components of the integrated HTS process, such as screening automation, compound library management, the screening of natural products from botanical sources, and screening informatics. Designed to motivate researchers to bring further advances to the field, this volume provides practical guidance on how to initiate, validate, optimize, and manage a bioassay intended to screen large collections of compounds. Drawing on the knowledge from experts actively involved in assay development and HTS, this is a resource that is both comprehensive and focused.




Chemical Genomics


Book Description

Advances in chemistry, biology and genomics coupled with laboratory automation and computational technologies have led to the rapid emergence of the multidisciplinary field of chemical genomics. This edited text, with contributions from experts in the field, discusses the new techniques and applications that help further the study of chemical genomics. The beginning chapters provide an overview of the basic principles of chemical biology and chemical genomics. This is followed by a technical section that describes the sources of small-molecule chemicals; the basics of high-throughput screening technologies; and various bioassays for biochemical-, cellular- and organism-based screens. The final chapters connect the chemical genomics field with personalized medicine and the druggable genome for future discovery of new therapeutics. This book will be valuable to researchers, professionals and graduate students in many fields, including biology, biomedicine and chemistry.




The Immunoassay Handbook


Book Description

The fourth edition of The Immunoassay Handbook provides an excellent, thoroughly updated guide to the science, technology and applications of ELISA and other immunoassays, including a wealth of practical advice. It encompasses a wide range of methods and gives an insight into the latest developments and applications in clinical and veterinary practice and in pharmaceutical and life science research. Highly illustrated and clearly written, this award-winning reference work provides an excellent guide to this fast-growing field. Revised and extensively updated, with over 30% new material and 77 chapters, it reveals the underlying common principles and simplifies an abundance of innovation. The Immunoassay Handbook reviews a wide range of topics, now including lateral flow, microsphere multiplex assays, immunohistochemistry, practical ELISA development, assay interferences, pharmaceutical applications, qualitative immunoassays, antibody detection and lab-on-a-chip. This handbook is a must-read for all who use immunoassay as a tool, including clinicians, clinical and veterinary chemists, biochemists, food technologists, environmental scientists, and students and researchers in medicine, immunology and proteomics. It is an essential reference for the immunoassay industry. Provides an excellent revised guide to this commercially highly successful technology in diagnostics and research, from consumer home pregnancy kits to AIDS testing.www.immunoassayhandbook.com is a great resource that we put a lot of effort into. The content is designed to encourage purchases of single chapters or the entire book. David Wild is a healthcare industry veteran, with experience in biotechnology, pharmaceuticals, medical devices and immunodiagnostics, which remains his passion. He worked for Amersham, Eastman-Kodak, Johnson & Johnson, and Bristol-Myers Squibb, and consulted for diagnostics and biotechnology companies. He led research and development programs, design and construction of chemical and biotechnology plants, and integration of acquired companies. Director-level positions included Research and Development, Design Engineering, Operations and Strategy, for billion dollar businesses. He retired from full-time work in 2012 to focus on his role as Editor of The Immunoassay Handbook, and advises on product development, manufacturing and marketing. - Provides a unique mix of theory, practical advice and applications, with numerous examples - Offers explanations of technologies under development and practical insider tips that are sometimes omitted from scientific papers - Includes a comprehensive troubleshooting guide, useful for solving problems and improving assay performancee - Provides valuable chapter updates, now available on www.immunoassayhandbook.com




Statistical Methods in Biomarker and Early Clinical Development


Book Description

This contributed volume offers a much-needed overview of the statistical methods in early clinical drug and biomarker development. Chapters are written by expert statisticians with extensive experience in the pharmaceutical industry and regulatory agencies. Because of this, the data presented is often accompanied by real world case studies, which will help make examples more tangible for readers. The many applications of statistics in drug development are covered in detail, making this volume a must-have reference. Biomarker development and early clinical development are the two critical areas on which the book focuses. By having the two sections of the book dedicated to each of these topics, readers will have a more complete understanding of how applying statistical methods to early drug development can help identify the right drug for the right patient at the right dose. Also presented are exciting applications of machine learning and statistical modeling, along with innovative methods and state-of-the-art advances, making this a timely and practical resource. This volume is ideal for statisticians, researchers, and professionals interested in pharmaceutical research and development. Readers should be familiar with the fundamentals of statistics and clinical trials.




The ELISA Guidebook


Book Description

There have been very few developments that markedly affect the need to greatly revise the text from the last version of this book. This is testament to the fact that hetero- neous enzyme-linked immunosorbent assays (ELISA) provide ideal systems for dealing with a wide range of studies in many biological areas. The main reason for this success is test flexibility, whereby reactants can be used in different combinations, either attached passively to a solid phase support or in the liquid phase. The exploitation of the ELISA has been increased through continued development of specifically produced reagents, for example, monoclonal and polyclonal antibodies and peptide antigens coupled with the improvement and expansion of commercial products such as enzyme-linked conjugates, substrates and chromogens, plastics technology and design of microwell plates, inst- mentation advances and robotics. However, the principles of the ELISA remain the same. There has been some rearrangement of chapters plus addition of three new ones dealing with charting methods for assessing the indirect ELISA, ruggedness and robustness of tests-aspects of kit use and validation, and internal quality control and external quality management of data, respectively. These reflect the need to control what you are doing with ELISA and to exploit the method to its full extent. I do not apologize for dealing with the same areas in different ways a number of times, as it is imperative that principles are understood to allow planning, operation, and control of ELISA.




OECD Guidelines for the Testing of Chemicals, Section 4 Test No. 441: Hershberger Bioassay in Rats A Short-term Screening Assay for (Anti)Androgenic Properties


Book Description

The Hershberger Bioassay is an in vivo short–term screening test. It evaluates the ability of a chemical to elicit biological activities consistent with androgen agonists, antagonists or 5 á-reductase inhibitors. The current bioassay is based on the ...




Improving and Accelerating Therapeutic Development for Nervous System Disorders


Book Description

Improving and Accelerating Therapeutic Development for Nervous System Disorders is the summary of a workshop convened by the IOM Forum on Neuroscience and Nervous System Disorders to examine opportunities to accelerate early phases of drug development for nervous system drug discovery. Workshop participants discussed challenges in neuroscience research for enabling faster entry of potential treatments into first-in-human trials, explored how new and emerging tools and technologies may improve the efficiency of research, and considered mechanisms to facilitate a more effective and efficient development pipeline. There are several challenges to the current drug development pipeline for nervous system disorders. The fundamental etiology and pathophysiology of many nervous system disorders are unknown and the brain is inaccessible to study, making it difficult to develop accurate models. Patient heterogeneity is high, disease pathology can occur years to decades before becoming clinically apparent, and diagnostic and treatment biomarkers are lacking. In addition, the lack of validated targets, limitations related to the predictive validity of animal models - the extent to which the model predicts clinical efficacy - and regulatory barriers can also impede translation and drug development for nervous system disorders. Improving and Accelerating Therapeutic Development for Nervous System Disorders identifies avenues for moving directly from cellular models to human trials, minimizing the need for animal models to test efficacy, and discusses the potential benefits and risks of such an approach. This report is a timely discussion of opportunities to improve early drug development with a focus toward preclinical trials.




Validation of Cell-Based Assays in the GLP Setting


Book Description

The use of cell-based assays within pharmaceutical and biotechnology companies is driven in large part by the need to evaluate the plethora of drug targets derived from genomics and proteomics. In addition, the potential of biomarkers to facilitate the development of effective and safe drugs is being recognized as an integral part of all phases of drug development, and cell-based technologies are a critical part of biomarker discovery and development. Despite this critical role, cell-based assays have not been standardized and made compliant with Good Laboratory Practice guidelines. In this book, the editors have collected assays for which validation procedures have been developed, making this a vital purchase for anyone using such assays in drug development. This book: Describes the development, optimization and validation of cell-based assays, including procedural documentation required for Good Laboratory Practice Presents validations of cell-based assays for select targets, with step-by-step instructions, allowing the reader to reproduce the assay conditions and results Provides details of techniques used in the evaluation of immunodeficiency, autoimmune and oncological disorders, including assessment of cancer vaccines Offers a compendium of validation parameters that need to be considered when using these methods to develop a new drug Includes detailed protocols for the evaluation of cytokines and of neutralizing antibodies directed against protein therapeutics Validation of Cell-based Assays in the GLP Setting provides the professional with an invaluable reference source, featuring key guidelines. The book will prove extremely useful to all scientists working in the areas of drug development.




Drug Discovery and Development


Book Description

It is very important for scientists all over the globe to enhance drug discovery research for better human health. This book demonstrates that various expertise are essential for drug discovery including synthetic or natural drugs, clinical pharmacology, receptor identification, drug metabolism, pharmacodynamic and pharmacokinetic research. The following 5 sections cover diverse chapter topics in drug discovery: Natural Products as Sources of Leading Molecules in Drug Discovery; Oncology and Drug Discovery; Receptors Involvement in Drug Discovery; Management and Development of Drugs against Infectious Diseases; Advanced Methodology.