Assessment of Seismic Wave Effects on Soil-structure Interaction


Book Description

It is normally assumed in the seismic analysis of structures that the free-field motion which is used as input is the same for all points on a given level beneath the foundation mat. This represents a simplification, as not all particles of soil describe the same motion simultaneously. As the foundation mat of the structure is rigid in the horizontal direction, it will tend to average the ground motion. Abandoning the assumption of the uniformity of the input motion may lead to a reduction of the translational motion which a foundation mat will experience, as the displacement components will cancel each other to a certain extent. This is of considerable interest for the design of nuclear power plants which are very stiff, large structures. To investigate these effects, the extremely complex phenomenon of the passage of a seismic wave has to be simplified considerably. It is the purpose of this paper to determine if wave passage effects can be determined from the simplified analyses currently used.




Dynamic Soil-Structure Interaction


Book Description

Dynamic Soil-structure interaction is one of the major topics in earthquake engineering and soil dynamics since it is closely related to the safety evaluation of many important engineering projects, such as nuclear power plants, to resist earthquakes. In dealing with the analysis of dynamic soil-structure interactions, one of the most difficult tasks is the modeling of unbounded media. To solve this problem, many numerical methods and techniques have been developed. This book summarizes the most recent developments and applications in the field of dynamic soil-structure interaction, both in China and Switzerland. An excellent book for scientists and engineers in civil engineering, structural engineering, geotechnical engineering and earthquake engineering.







Soil Structure Interaction


Book Description




Developments in Dynamic Soil-Structure Interaction


Book Description

For the last couple of decades it has been recognized that the foundation material on which a structure is constructed may interact dynamically with the structure during its response to dynamic excitation to the extent that the stresses and deflections in the system are modified from the values that would have been developed if it had been on a rigid foundation. This phenomenon is examined in detail in the book. The basic solutions are examined in time and frequency domains and finite element and boundary element solutions compared. Experimental investigations aimed at correlation and verification with theory are described in detail. A wide variety of SSI problems may be formulated and solved approximately using simplified models in lieu of rigorous procedures; the book gives a good overview of these methods. A feature which often lacks in other texts on the subject is the way in which dynamic behavior of soil can be modeled. Two contributors have addressed this problem from the computational and physical characterization viewpoints. The book illustrates practical areas with the analysis of tunnel linings and stiffness and damping of pile groups. Finally, design code provisions and derivation of design input motions complete this thorough overview of SSI in conventional engineering practice. Taken in its entirety the book, authored by fifteen well known experts, gives an in-depth review of soil-structure interaction across a broad spectrum of aspects usually not covered in a single volume. It should be a readily useable reference for the research worker as well as the advance level practitioner. (abstract) This book treats the dynamic soil-structure interaction phenomenon across a broad spectrum of aspects ranging from basic theory, simplified and rigorous solution techniques and their comparisons as well as successes in predicting experimentally recorded measurements. Dynamic soil behavior and practical problems are given thorough coverage. It is intended to serve both as a readily understandable reference work for the researcher and the advanced-level practitioner.




Perspectives on European Earthquake Engineering and Seismology


Book Description

This book collects 4 keynote and 15 theme lectures presented at the 2nd European Conference on Earthquake Engineering and Seismology (2ECEES), held in Istanbul, Turkey, from August 24 to 29, 2014. The conference was organized by the Turkish Earthquake Foundation - Earthquake Engineering Committee and Prime Ministry, Disaster and Emergency Management Presidency under the auspices of the European Association for Earthquake Engineering (EAEE) and European Seismological Commission (ESC). The book’s nineteen state-of-the-art chapters were written by the most prominent researchers in Europe and address a comprehensive collection of topics on earthquake engineering, as well as interdisciplinary subjects such as engineering seismology and seismic risk assessment and management. Further topics include engineering seismology, geotechnical earthquake engineering, seismic performance of buildings, earthquake-resistant engineering structures, new techniques and technologies, and managing risk in seismic regions. The book also presents the First Professor Inge Lehmann Distinguished Award Lecture given by Prof. Shamita Das in honor of Prof. Dr. Inge Lehmann. The aim of this work is to present the state-of-the art and latest practices in the fields of earthquake engineering and seismology, with Europe’s most respected researchers addressing recent and ongoing developments while also proposing innovative avenues for future research and development. Given its cutting-edge conten t and broad spectrum of topics, the book offers a unique reference guide for researchers in these fields. Audience: This book is of interest to civil engineers in the fields of geotechnical and structural earthquake engineering; scientists and researchers in the fields of seismology, geology and geophysics. Not only scientists, engineers and students, but also those interested in earthquake hazard assessment and mitigation will find in this book the most recent advances.




Soil-structure interaction in seismic analysis


Book Description

Soil-structure interaction (SSI) is an important phenomenon in the seismic response analysis. As seismologists describe seismic excitation in terms of the seismic motion of certain control point at the free surface of the initial site, the question is whether the same point of the structure (after structure appears) will have the same seismic response motion in case of the same seismic event. If yes, then seismic motion from seismologists is directly applied to the base of the structure (it is called “fixed-base analysis”), and they say that “no SSI occurs”’ (though literally speaking soil is forcing structure to move, so interaction is always present). This is a conventional approach in the field of civil engineering. However, if heavy and rigid structure (sometimes embedded) is erected on medium or soft soil site, this structure changes the seismic response motion of the soil as compared to the initial free-field picture. Such a situation is typical for Nuclear Power Plants (NPPs), deeply embedded structures, etc. The book describes different approaches to SSI analysis and different SSI effects. Special attention is paid to the Combined Asymptotic Method (CAM) developed by the author and used for the design of NPPs in seismic regions. Nowadays, some civil structures have parameters comparable to those of NPPs (e.g., masses and embedment), so these approaches become useful for the civil structural engineers as well.




Seismic Structure-soil-structure Interaction Effects


Book Description

This study investigates the seismic response and dynamic cross-interaction effects on two closely located nuclear power plants (NPP) to a range of seismic inputs with varying frequency content. A comprehensive study is undertaken to examine the effects of the location of the seismic source as well as the soil characteristics beneath the NPP on dynamic structure-soil-structure interaction (SSSI) between the adjacent structures. The effect of proximity of the NPP is also studied by varying the distance between the power plants. In the preliminary phase of the study, the significance of using three dimensional seismic waves in response evaluation of nuclear power plant buildings is demonstrated. First, the responses of a single power plant subjected to one-dimensional and three-dimensional waves are compared. This is followed by a similar series of analyses on closely located adjacent power plants. It is shown that using one-dimensional waves can lead to misrepresentation of the seismic response of the NPP and non-conservative estimates of seismic demands. In general, the variation in response between 1D and 3D waves was more significant for the containment building than the auxiliary structure. Findings from the preliminary phase of the study formed the basis for the next set of comprehensive simulations to investigate the dynamic cross-interaction between adjacent nuclear power plant buildings for three earthquake scenarios and three different soil conditions. Each scenario represents a different form of seismic wave caused by a near source earthquake. For each scenario, to evaluate the influence of site conditions, simulations are performed on soft, medium, and hard soil sites. In addition, the free distance between the adjacent buildings is varied to study the influence of the proximity of the structures to the SSSI effects. The primary findings from the study can be summarized as follows: (i) increasing the shear wave velocity of the site which increases the minimum wave length, reduces the dynamic cross interaction between the buildings; (ii) unlike the response of the auxiliary building which is influenced the most on hard soil sites, the response of the containment building is influenced mostly on softer soils; (iii) high frequencies are introduced in the response due to presence of the adjacent building which influences the dynamic SSSI effects; (iv) dynamic cross-interaction effects are different depending on whether the buildings are located upstream or downstream of the propagating seismic waves and response in the downstream building is generally (not necessarily) higher than the upstream one; (v) for deep near-source events, dynamic cross-interaction is observed in all components of the response whereas for shallow earthquakes, the response is mostly influenced in the direction of the wave propagation; and (vi) generally, but not necessarily, increasing the distance between the power plants decreases the dynamic cross interaction.




Earthquake-Soil Interaction


Book Description

Comprises a selection of articles on interactions between earthquakes and the soil in which they propagate. The book is concerned with soil composition and geomechanical features, which affect earthquake propagation and intensity; it also addresses detrimental effects of seismic shaking on soil properties and stability. Modelling is applied to investigate the effects of cracks and various types of soil damping on seismic waves. Elastic, poroelastic, elasto-plastic, constitutive models are adopted in conjunction with rigorous mathematical techniques or approximate methods such as boundary elements or finite differences. A substantial part of this volume is dedicated to soil liquefaction, an important consequent of seismic shaking that results in substantial loss of soil strength and stiffness. Criteria are proposed for assessing the liquefaction potential of a site. Data collected from soil samples, either in the laboratory or in-situ, are analysed to provide values for the critical parameters on which liquefaction depends. The occurrence of landslides is addressed by assessing slope stability through a systematic geophysical and geotechnical characterisation of the soil mass followed by finite element modelling. The bearing capacity of the soil is directly obtained by laboratory testing of soil samples, as well as from reliable empirical relations generated by combining such test data with in-situ measurements of soil dynamic properties.




Fundamentals of Earthquake Engineering


Book Description

Fundamentals of Earthquake Engineering: From Source to Fragility, Second Edition combines aspects of engineering seismology, structural and geotechnical earthquake engineering to assemble the vital components required for a deep understanding of response of structures to earthquake ground motion, from the seismic source to the evaluation of actions and deformation required for design, and culminating with probabilistic fragility analysis that applies to individual as well as groups of buildings. Basic concepts for accounting for the effects of soil-structure interaction effects in seismic design and assessment are also provided in this second edition. The nature of earthquake risk assessment is inherently multi-disciplinary. Whereas this book addresses only structural safety assessment and design, the problem is cast in its appropriate context by relating structural damage states to societal consequences and expectations, through the fundamental response quantities of stiffness, strength and ductility. This new edition includes material on the nature of earthquake sources and mechanisms, various methods for the characterization of earthquake input motion, effects of soil-structure interaction, damage observed in reconnaissance missions, modeling of structures for the purposes of response simulation, definition of performance limit states, fragility relationships derivation, features and effects of underlying soil, structural and architectural systems for optimal seismic response, and action and deformation quantities suitable for design. Key features: Unified and novel approach: from source to fragility Clear conceptual framework for structural response analysis, earthquake input characterization, modelling of soil-structure interaction and derivation of fragility functions Theory and relevant practical applications are merged within each chapter Contains a new chapter on the derivation of fragility Accompanied by a website containing illustrative slides, problems with solutions and worked-through examples Fundamentals of Earthquake Engineering: From Source to Fragility, Second Edition is designed to support graduate teaching and learning, introduce practising structural and geotechnical engineers to earthquake analysis and design problems, as well as being a reference book for further studies.