Handbook on Thermal Hydraulics in Water-Cooled Nuclear Reactors


Book Description

Handbook on Thermal Hydraulics of Water-Cooled Nuclear Reactors, Volume 2, Modelling includes all new chapters which delve deeper into the topic, adding context and practical examples to help readers apply learnings to their own setting. Topics covered include experimental thermal-hydraulics and instrumentation, numerics, scaling and containment in thermal-hydraulics, as well as a title dedicated to good practices in verification and validation. This book will be a valuable reference for graduate and undergraduate students of nuclear or thermal engineering, as well as researchers in nuclear thermal-hydraulics and reactor technology, engineers working in simulation and modeling of nuclear reactors, and more. In addition, nuclear operators, code developers and safety engineers will also benefit from the practical guidance provided. - Presents a comprehensive analysis on the connection between nuclear power and thermal hydraulics - Includes end-of-chapter questions, quizzes and exercises to confirm understanding and provides solutions in an appendix - Covers applicable nuclear reactor safety considerations and design technology throughout




Assessment of Size Aspects in Modelling Molten Fuel Coolant Interaction


Book Description

ABSTRACT Severe accidents in light water nuclear reactors occur when reactor vessel water inventory decreases and there is no available additional water coolant to be delivered into the core. In general, during an extended severe accident sequence a period exists in which the reactor core, after a partial or total melt down, is poured into the lower plenum that can have some water present. The study of the interaction of the melt fuel with the water is the objective of MFCI (Melt Fuel Coolant Interaction) activities. MFCI is one of the most important issues awaiting resolution in water cooled reactor safety analysis. The progression of a severe accident in a water cooled reactor can lead to energetic (steam explosion) or non-energetic (melt quenching) interactions as the molten fuel relocates and eventually interacts with the coolant either in the vessel lower head (in vessel) or in the cavity (ex-vessel). The MFCI experiments at JRC Ispra site were conducted in the FARO (Furnace And Release Oven) test facility under realistic melt composition and prototypical accident conditions to provide basic information on underlying phenomena. The experimental programme was complemented by comprehensive pre-test and post-test analytical activities based on the development and application of the thermalhydraulic COMETA (COre MElt Thermalhydraulic Analysis) code. The code is developed and assessed on the basis of experimental information acquired in the FARO facility tests, and there are some limitations and uncertainties in their application to the full plant, which need to be identified and possibly quantified. In general the main objective of the PhD research was achieved expanding the general knowledge in Melt Fuel Coolant Interaction. The knowledge was complemented collaborating and complementing the application of COMETA code under conditions not experimented before, developing and improving COMETA code sources and verifying the code consistency, analysing and unifying the.




Modelling Molten Fuel Coolant Interaction


Book Description

Severe accidents (SA) in LWR occur when reactor vessel water decreases and there is no available water for core cooling. During SA the reactor core could, after partial/total melt down, pour into the lower plenum. The study of the interaction of melt fuel with water is the objective of MFCI (Melt Fuel Coolant Interaction). MFCI is an important issue in reactor safety . A SA can lead to energetic (steam explosion) or non-energetic (melt quenching) interactions in-vessel or ex-vessel. FARO facility at JRC-Ispra simulated MFCI experiments under real conditions. Pre-test/post-test analytical activities using COMETA code were carried out. The code was assessed based on FARO tests. Limitations and uncertainties in the application to a full plant needed to be identified and quantified. The PhD research objective was achieved expanding the knowledge in MFCI. It was complemented with application of COMETA to conditions not experimented before, developing and improving COMETA sources and verifying code consistency, analysing and unifying the COMETA simulations. An analytical study was carried out to illustrate the MFCI inside a NPP SA sequence.




Thermal-Hydraulics of Water Cooled Nuclear Reactors


Book Description

Thermal Hydraulics of Water-Cooled Nuclear Reactors reviews flow and heat transfer phenomena in nuclear systems and examines the critical contribution of this analysis to nuclear technology development. With a strong focus on system thermal hydraulics (SYS TH), the book provides a detailed, yet approachable, presentation of current approaches to reactor thermal hydraulic analysis, also considering the importance of this discipline for the design and operation of safe and efficient water-cooled and moderated reactors. Part One presents the background to nuclear thermal hydraulics, starting with a historical perspective, defining key terms, and considering thermal hydraulics requirements in nuclear technology. Part Two addresses the principles of thermodynamics and relevant target phenomena in nuclear systems. Next, the book focuses on nuclear thermal hydraulics modeling, covering the key areas of heat transfer and pressure drops, then moving on to an introduction to SYS TH and computational fluid dynamics codes. The final part of the book reviews the application of thermal hydraulics in nuclear technology, with chapters on V&V and uncertainty in SYS TH codes, the BEPU approach, and applications to new reactor design, plant lifetime extension, and accident analysis. This book is a valuable resource for academics, graduate students, and professionals studying the thermal hydraulic analysis of nuclear power plants and using SYS TH to demonstrate their safety and acceptability. - Contains a systematic and comprehensive review of current approaches to the thermal-hydraulic analysis of water-cooled and moderated nuclear reactors - Clearly presents the relationship between system level (top-down analysis) and component level phenomenology (bottom-up analysis) - Provides a strong focus on nuclear system thermal hydraulic (SYS TH) codes - Presents detailed coverage of the applications of thermal-hydraulics to demonstrate the safety and acceptability of nuclear power plants













ERDA Energy Research Abstracts


Book Description




ERDA Energy Research Abstracts


Book Description