Asymptotic Analysis of Spatial Problems in Elasticity


Book Description

The book presents homogeneous solutions in static and dynamical problems of anisotropic theory of elasticity, which are constructed for a hollow cylinder. It also offers an asymptotic process for finding frequencies of natural vibrations of a hollow cylinder, and establishes a qualitative study of several applied theories of the boundaries of applicability. Further the authors develop a general theory for a transversally isotropic spherical shell, which includes methods for constructing inhomogeneous and homogeneous solutions that allow the characteristic features of the stress–strain state of an anisotropic spherical shell to be revealed. Lastly, the book introduces an asymptotic method for integrating the equations of anisotropic theory of elasticity in variable thickness plates and shells. Based on the results of the author and researchers at Baku State University and the Institute of Mathematics and Mechanics, ANAS, the book is intended for specialists in the field of theory of elasticity, theory of plates and shells, and applied mathematics.




Mathematical Problems In Elasticity


Book Description

In this volume, five papers are collected that give a good sample of the problems and the results characterizing some recent trends and advances in this theory. Some of them are devoted to the improvement of a general abstract knowledge of the behavior of elastic bodies, while the others mainly deal with more applicative topics.







Advances in Design, Simulation and Manufacturing V


Book Description

This book reports on topics at the interface between manufacturing and materials engineering, with a special emphasis on smart and sustainable manufacturing. It describes innovative research in design engineering and manufacturing technology, covering the development and characterization of advanced materials alike. It also discusses key aspects related to ICT in engineering education. Based on the 5th International Conference on Design, Simulation, Manufacturing: The Innovation Exchange (DSMIE-2022), held on June 7-10, 2022, in Poznan, Poland, this first volume of a 2-volume set provides academics and professionals with extensive information on trends and technologies, and challenges and practice-oriented experience in all the above-mentioned areas.




Nonlinear Problems of Elasticity


Book Description

The scientists of the seventeenth and eighteenth centuries, led by Jas. Bernoulli and Euler, created a coherent theory of the mechanics of strings and rods undergoing planar deformations. They introduced the basic con cepts of strain, both extensional and flexural, of contact force with its com ponents of tension and shear force, and of contact couple. They extended Newton's Law of Motion for a mass point to a law valid for any deformable body. Euler formulated its independent and much subtler complement, the Angular Momentum Principle. (Euler also gave effective variational characterizations of the governing equations. ) These scientists breathed life into the theory by proposing, formulating, and solving the problems of the suspension bridge, the catenary, the velaria, the elastica, and the small transverse vibrations of an elastic string. (The level of difficulty of some of these problems is such that even today their descriptions are sel dom vouchsafed to undergraduates. The realization that such profound and beautiful results could be deduced by mathematical reasoning from fundamental physical principles furnished a significant contribution to the intellectual climate of the Age of Reason. ) At first, those who solved these problems did not distinguish between linear and nonlinear equations, and so were not intimidated by the latter. By the middle of the nineteenth century, Cauchy had constructed the basic framework of three-dimensional continuum mechanics on the founda tions built by his eighteenth-century predecessors.




Encyclopedia of Optimization


Book Description

The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".




Vibrations of Hollow Elastic Bodies


Book Description

This book focuses on the justification and refinement of highly diverse approximate dynamic models for engineering structures arising in modern technology, including high-tech domains involving nano- and meta-materials. It proposes a classification for vibration spectra over a broad frequency domain and evaluates the range of validity of various existing 2D theories for thin-walled shells by comparing them with 3D benchmark solutions. The dynamic equations in 3D elasticity are applied to the analysis of harmonic vibrations in hollow bodies with canonical shapes. New exact homogeneous and inhomogeneous solutions are derived for cylinders, spheres and cones (including spherical and conical layers), as well as for plates of variable thickness. The book includes a wealth of numerical examples, as well as refined versions of 2D dynamic formulations. Boundary value problems for hollow bodies are also addressed.







Applications of the Topological Derivative Method


Book Description

The book presents new results and applications of the topological derivative method in control theory, topology optimization and inverse problems. It also introduces the theory in singularly perturbed geometrical domains using selected examples. Recognized as a robust numerical technique in engineering applications, such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena, the topological derivative method is based on the asymptotic approximations of solutions to elliptic boundary value problems combined with mathematical programming tools. The book presents the first order topology design algorithm and its applications in topology optimization, and introduces the second order Newton-type reconstruction algorithm based on higher order topological derivatives for solving inverse reconstruction problems. It is intended for researchers and students in applied mathematics and computational mechanics interested in the mathematical aspects of the topological derivative method as well as its applications in computational mechanics.




Analysis of Shells, Plates, and Beams


Book Description

This book commemorates the 75th birthday of Prof. George Jaiani – Georgia’s leading expert on shell theory. He is also well known outside Georgia for his individual approach to shell theory research and as an organizer of meetings, conferences and schools in the field. The collection of papers presented includes articles by scientists from various countries discussing the state of the art and new trends in the theory of shells, plates, and beams. Chapter 20 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.