Global Well-Posedness of High Dimensional Maxwell–Dirac for Small Critical Data


Book Description

In this paper, the authors prove global well-posedness of the massless Maxwell–Dirac equation in the Coulomb gauge on R1+d(d≥4) for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncovering null structure of Maxwell–Dirac in the Coulomb gauge, and B) proving solvability of the underlying covariant Dirac equation. A key step for achieving both is to exploit (and justify) a deep analogy between Maxwell–Dirac and Maxwell-Klein-Gordon (for which an analogous result was proved earlier by Krieger-Sterbenz-Tataru, which says that the most difficult part of Maxwell–Dirac takes essentially the same form as Maxwell-Klein-Gordon.




Topics In Mathematical Physics General Relativity And Cosmology In Honor Of Jerzy Plebanski - Proceedings Of 2002 International Conference


Book Description

One of modern science's most famous and controversial figures, Jerzy Plebanski was an outstanding theoretical physicist and an author of many intriguing discoveries in general relativity and quantum theory. Known for his exceptional analytic talents, explosive character, inexhaustible energy, and bohemian nights with brandy, coffee, and enormous amounts of cigarettes, he was dedicated to both science and art, producing innumerable handwritten articles — resembling monk's calligraphy — as well as a collection of oil paintings.As a collaborator but also an antagonist of Leopold Infeld's (a coauthor of Albert Einstein's), Plebanski is recognized for designing the “heavenly” and “hyper-heavenly” equations, for introducing new variables to describe the gravitational field, for the exact solutions in Einstein's gravity and in quantum theory, for his classification of the tensor of matter, for some outstanding results in nonlinear electrodynamics, and for analyzing general relativity with continuous sources long before Chandrasekhar et al.A tribute to Plebański's contributions and the variety of his interests, this is a unique and wide-ranging collection of invited papers, covering gravity quantization, strings, branes, supersymmetry, ideas on the deformation quantization, and lesser known results on the continuous Baker-Campbell-Hausdorff problem.




GROUP 24


Book Description

As a record of an international meeting devoted to the physical and mathematical aspects of group theory, GROUP 24: Physical and Mathematical Aspects of Symmetries provides an important selection of informative articles describing recent advances in the field. The applications of group theory presented in this book deal not only with the traditional fields of physics, but also include such disciplines as chemistry and biology. Plenary session contributions are represented by 18 longer articles, followed by nearly 200 shorter articles. The book also presents coherent states, wavelets, and applications and quantum group theory and integrable systems in two separate sections.




Modern Group Theoretical Methods in Physics


Book Description

This book contains the proceedings of a meeting that brought together friends and colleagues of Guy Rideau at the Université Denis Diderot (Paris, France) in January 1995. It contains original results as well as review papers covering important domains of mathematical physics, such as modern statistical mechanics, field theory, and quantum groups. The emphasis is on geometrical approaches. Several papers are devoted to the study of symmetry groups, including applications to nonlinear differential equations, and deformation of structures, in particular deformation-quantization and quantum groups. The richness of the field of mathematical physics is demonstrated with topics ranging from pure mathematics to up-to-date applications such as imaging and neuronal models. Audience: Researchers in mathematical physics.




Collection Of Papers On Geometry, Analysis And Mathematical Physics


Book Description

This volume is published in honor of Professor Gu Chaohao, a renowned mathematician and member of the Chinese Academy of Sciences, on the occasion of his 70th birthday and his 50th year of educational work. The subjects covered by this collection are closely related to differential geometry, partial differential equations and mathematical physics — the major areas in which Professor Gu has received notable achievements. Many distinguished mathematicians all over the world contributed their papers to this collection. This collection also consists of “Gu Chaohao and I” written by C N Yang, “The academic career and accomplishment of Professor Gu Chaohao” by T T Li and “List of publications of Professor Gu Chaohao”.




Conférence Moshé Flato 1999


Book Description

These two volumes constitute the Proceedings of the `Conférence Moshé Flato, 1999'. Their spectrum is wide but the various areas covered are, in fact, strongly interwoven by a common denominator, the unique personality and creativity of the scientist in whose honor the Conference was held, and the far-reaching vision that underlies his scientific activity. With these two volumes, the reader will be able to take stock of the present state of the art in a number of subjects at the frontier of current research in mathematics, mathematical physics, and physics. Volume I is prefaced by reminiscences of and tributes to Flato's life and work. It also includes a section on the applications of sciences to insurance and finance, an area which was of interest to Flato before it became fashionable. The bulk of both volumes is on physical mathematics, where the reader will find these ingredients in various combinations, fundamental mathematical developments based on them, and challenging interpretations of physical phenomena. Audience: These volumes will be of interest to researchers and graduate students in a variety of domains, ranging from abstract mathematics to theoretical physics and other applications. Some parts will be accessible to proficient undergraduate students, and even to persons with a minimum of scientific knowledge but enough curiosity.




Dynamics in Models of Coarsening, Coagulation, Condensation and Quantization


Book Description

The Institute for Mathematical Sciences at the National University of Singapore hosted a research program on Nanoscale Material Interfaces: Experiment, Theory and Simulation'' from November 2004 to January 2005. As part of the program, tutorials for graduate students and junior researchers were given by leading experts in the field. This invaluable volume collects the expanded lecture notes of four of those self-contained tutorials. The topics covered include dynamics in different models of domain coarsening and coagulation and their mathematical analysis in material sciences; a mathematical and computational study for quantized vortices in the celebrated GinzburgOCoLandau models of superconductivity and the mean field GrossOCoPitaevskii equations of superfluidity; the nonlinear SchrAdinger equation and applications in BoseOCoEinstein condensation and plasma physics as well as their efficient and accurate computation; and finally, an introduction to constitutive modeling of macromolecular fluids within the framework of the kinetic theory. This volume serves to inspire graduate students and researchers who will embark upon original research work in these fields."




Spectral Asymptotics on Degenerating Hyperbolic 3-Manifolds


Book Description

In this volume, the authors study asymptotics of the geometry and spectral theory of degenerating sequences of finite volume hyperbolic manifolds of three dimensions. Thurston's hyperbolic surgery theorem assets the existence of non-trivial sequences of finite volume hyperbolic three manifolds which converge to a three manifold with additional cusps. In the geometric aspect of their study, the authors use the convergence of hyperbolic metrics on the thick parts of the manifolds under consideration to investigate convergentce of tubes in the manifolds of the sequence to cusps of the limiting manifold. In the specral theory aspect of the work, they prove convergence of heat kernels. They then define a regualrized heat race associated to any finite volume, complete, hyperbolic three manifold, and study its asymptotic behaviour through degeneration. As an application of the analysis of the regularized heat trace, they study asymptotic behaviours of the spectral zeta function, determinant of the Laplacian, Selberg zeta function, and spectral counting functions through degeneration. The authors' methods are an adaptation to three dimensions of the earlier work of Jorgenson and Lundelius who investigated the asymptotic behaviour of spectral functions on degenerating families of finite area hyperbolic Riemann surfaces.




Existence and Persistence of Invariant Manifolds for Semiflows in Banach Space


Book Description

Extends the theory for normally hyperbolic invariant manifolds to infinite dimensional dynamical systems in a Banach space, thereby providing tools for the study of PDE's and other infinite dimensional equations of evolution. In the process, the authors establish the existence of center-unstable and center-stable manifolds in a neighborhood of the unperturbed compact manifold. No index. Annotation copyrighted by Book News, Inc., Portland, OR