Asymptotic Statistics in Insurance Risk Theory


Book Description

This book begins with the fundamental large sample theory, estimating ruin probability, and ends by dealing with the latest issues of estimating the Gerber–Shiu function. This book is the first to introduce the recent development of statistical methodologies in risk theory (ruin theory) as well as their mathematical validities. Asymptotic theory of parametric and nonparametric inference for the ruin-related quantities is discussed under the setting of not only classical compound Poisson risk processes (Cramér–Lundberg model) but also more general Lévy insurance risk processes. The recent development of risk theory can deal with many kinds of ruin-related quantities: the probability of ruin as well as Gerber–Shiu’s discounted penalty function, both of which are useful in insurance risk management and in financial credit risk analysis. In those areas, the common stochastic models are used in the context of the structural approach of companies’ default. So far, the probabilistic point of view has been the main concern for academic researchers. However, this book emphasizes the statistical point of view because identifying the risk model is always necessary and is crucial in the final step of practical risk management.




Modern Actuarial Risk Theory


Book Description

Modern Actuarial Risk Theory contains what every actuary needs to know about non-life insurance mathematics. It starts with the standard material like utility theory, individual and collective model and basic ruin theory. Other topics are risk measures and premium principles, bonus-malus systems, ordering of risks and credibility theory. It also contains some chapters about Generalized Linear Models, applied to rating and IBNR problems. As to the level of the mathematics, the book would fit in a bachelors or masters program in quantitative economics or mathematical statistics. This second and.




Fundamentals of Nonparametric Bayesian Inference


Book Description

Bayesian nonparametrics comes of age with this landmark text synthesizing theory, methodology and computation.




Asymptotic Statistics


Book Description

In particular up-to-date-information is presented in detection of systematic changes, in series of observation, in robust regression analysis, in numerical empirical processes and in related areas of actuarial sciences.




Generalized Poisson Models and their Applications in Insurance and Finance


Book Description

The series is devoted to the publication of high-level monographs and surveys which cover the whole spectrum of probability and statistics. The books of the series are addressed to both experts and advanced students.




Image Analysis, Random Fields and Markov Chain Monte Carlo Methods


Book Description

"This book is concerned with a probabilistic approach for image analysis, mostly from the Bayesian point of view, and the important Markov chain Monte Carlo methods commonly used....This book will be useful, especially to researchers with a strong background in probability and an interest in image analysis. The author has presented the theory with rigor...he doesn’t neglect applications, providing numerous examples of applications to illustrate the theory." -- MATHEMATICAL REVIEWS




Reinsurance


Book Description

Reinsurance: Actuarial and Statistical Aspects provides a survey of both the academic literature in the field as well as challenges appearing in reinsurance practice and puts the two in perspective. The book is written for researchers with an interest in reinsurance problems, for graduate students with a basic knowledge of probability and statistics as well as for reinsurance practitioners. The focus of the book is on modelling together with the statistical challenges that go along with it. The discussed statistical approaches are illustrated alongside six case studies of insurance loss data sets, ranging from MTPL over fire to storm and flood loss data. Some of the presented material also contains new results that have not yet been published in the research literature. An extensive bibliography provides readers with links for further study.




Stochastic Networks and Queues


Book Description

Queues and stochastic networks are analyzed in this book with purely probabilistic methods. The purpose of these lectures is to show that general results from Markov processes, martingales or ergodic theory can be used directly to study the corresponding stochastic processes. Recent developments have shown that, instead of having ad-hoc methods, a better understanding of fundamental results on stochastic processes is crucial to study the complex behavior of stochastic networks. In this book, various aspects of these stochastic models are investigated in depth in an elementary way: Existence of equilibrium, characterization of stationary regimes, transient behaviors (rare events, hitting times) and critical regimes, etc. A simple presentation of stationary point processes and Palm measures is given. Scaling methods and functional limit theorems are a major theme of this book. In particular, a complete chapter is devoted to fluid limits of Markov processes.




Stochastic Simulation: Algorithms and Analysis


Book Description

Sampling-based computational methods have become a fundamental part of the numerical toolset of practitioners and researchers across an enormous number of different applied domains and academic disciplines. This book provides a broad treatment of such sampling-based methods, as well as accompanying mathematical analysis of the convergence properties of the methods discussed. The reach of the ideas is illustrated by discussing a wide range of applications and the models that have found wide usage. The first half of the book focuses on general methods; the second half discusses model-specific algorithms. Exercises and illustrations are included.




asymptotic analysis of random walks


Book Description

A comprehensive monograph presenting a unified systematic exposition of the large deviations theory for heavy-tailed random walks.