Design of Cost-Efficient Interconnect Processing Units


Book Description

Streamlined Design Solutions Specifically for NoC To solve critical network-on-chip (NoC) architecture and design problems related to structure, performance and modularity, engineers generally rely on guidance from the abundance of literature about better-understood system-level interconnection networks. However, on-chip networks present several distinct challenges that require novel and specialized solutions not found in the tried-and-true system-level techniques. A Balanced Analysis of NoC Architecture As the first detailed description of the commercial Spidergon STNoC architecture, Design of Cost-Efficient Interconnect Processing Units: Spidergon STNoC examines the highly regarded, cost-cutting technology that is set to replace well-known shared bus architectures, such as STBus, for demanding multiprocessor system-on-chip (SoC) applications. Employing a balanced, well-organized structure, simple teaching methods, numerous illustrations, and easy-to-understand examples, the authors explain: how the SoC and NoC technology works why developers designed it the way they did the system-level design methodology and tools used to configure the Spidergon STNoC architecture differences in cost structure between NoCs and system-level networks From professionals in computer sciences, electrical engineering, and other related fields, to semiconductor vendors and investors – all readers will appreciate the encyclopedic treatment of background NoC information ranging from CMPs to the basics of interconnection networks. The text introduces innovative system-level design methodology and tools for efficient design space exploration and topology selection. It also provides a wealth of key theoretical and practical MPSoC and NoC topics, such as technological deep sub-micron effects, homogeneous and heterogeneous processor architectures, multicore SoC, interconnect processing units, generic NoC components, and embeddings of common communication patterns.




Multicore Technology


Book Description

The saturation of design complexity and clock frequencies for single-core processors has resulted in the emergence of multicore architectures as an alternative design paradigm. Nowadays, multicore/multithreaded computing systems are not only a de-facto standard for high-end applications, they are also gaining popularity in the field of embedded computing. The start of the multicore era has altered the concepts relating to almost all of the areas of computer architecture design, including core design, memory management, thread scheduling, application support, inter-processor communication, debugging, and power management. This book gives readers a holistic overview of the field and guides them to further avenues of research by covering the state of the art in this area. It includes contributions from industry as well as academia.




Reliability, Availability and Serviceability of Networks-on-Chip


Book Description

This book presents an overview of the issues related to the test, diagnosis and fault-tolerance of Network on Chip-based systems. It is the first book dedicated to the quality aspects of NoC-based systems and will serve as an invaluable reference to the problems, challenges, solutions, and trade-offs related to designing and implementing state-of-the-art, on-chip communication architectures.







Principles of Asynchronous Circuit Design


Book Description

Principles of Asynchronous Circuit Design - A Systems Perspective addresses the need for an introductory text on asynchronous circuit design. Part I is an 8-chapter tutorial which addresses the most important issues for the beginner, including how to think about asynchronous systems. Part II is a 4-chapter introduction to Balsa, a freely-available synthesis system for asynchronous circuits which will enable the reader to get hands-on experience of designing high-level asynchronous systems. Part III offers a number of examples of state-of-the-art asynchronous systems to illustrate what can be built using asynchronous techniques. The examples range from a complete commercial smart card chip to complex microprocessors. The objective in writing this book has been to enable industrial designers with a background in conventional (clocked) design to be able to understand asynchronous design sufficiently to assess what it has to offer and whether it might be advantageous in their next design task.







Networks on Chips


Book Description

The design of today's semiconductor chips for various applications, such as telecommunications, poses various challenges due to the complexity of these systems. These highly complex systems-on-chips demand new approaches to connect and manage the communication between on-chip processing and storage components and networks on chips (NoCs) provide a powerful solution. This book is the first to provide a unified overview of NoC technology. It includes in-depth analysis of all the on-chip communication challenges, from physical wiring implementation up to software architecture, and a complete classification of their various Network-on-Chip approaches and solutions.* Leading-edge research from world-renowned experts in academia and industry with state-of-the-art technology implementations/trends* An integrated presentation not currently available in any other book* A thorough introduction to current design methodologies and chips designed with NoCs




Introduction to Storage Area Networks


Book Description

The superabundance of data that is created by today's businesses is making storage a strategic investment priority for companies of all sizes. As storage takes precedence, the following major initiatives emerge: Flatten and converge your network: IBM® takes an open, standards-based approach to implement the latest advances in the flat, converged data center network designs of today. IBM Storage solutions enable clients to deploy a high-speed, low-latency Unified Fabric Architecture. Optimize and automate virtualization: Advanced virtualization awareness reduces the cost and complexity of deploying physical and virtual data center infrastructure. Simplify management: IBM data center networks are easy to deploy, maintain, scale, and virtualize, delivering the foundation of consolidated operations for dynamic infrastructure management. Storage is no longer an afterthought. Too much is at stake. Companies are searching for more ways to efficiently manage expanding volumes of data, and to make that data accessible throughout the enterprise. This demand is propelling the move of storage into the network. Also, the increasing complexity of managing large numbers of storage devices and vast amounts of data is driving greater business value into software and services. With current estimates of the amount of data to be managed and made available increasing at 60% each year, this outlook is where a storage area network (SAN) enters the arena. SANs are the leading storage infrastructure for the global economy of today. SANs offer simplified storage management, scalability, flexibility, and availability; and improved data access, movement, and backup. Welcome to the cognitive era. The smarter data center with the improved economics of IT can be achieved by connecting servers and storage with a high-speed and intelligent network fabric. A smarter data center that hosts IBM Storage solutions can provide an environment that is smarter, faster, greener, open, and easy to manage. This IBM® Redbooks® publication provides an introduction to SAN and Ethernet networking, and how these networks help to achieve a smarter data center. This book is intended for people who are not very familiar with IT, or who are just starting out in the IT world.




SATA Storage Technology


Book Description




Low Power Networks-on-Chip


Book Description

In recent years, both Networks-on-Chip, as an architectural solution for high-speed interconnect, and power consumption, as a key design constraint, have continued to gain interest in the design and research communities. This book offers a single-source reference to some of the most important design techniques proposed in the context of low-power design for networks-on-chip architectures.