Atlas of Drosophila Morphology


Book Description

The Atlas of Drosophila Morphology: Wild-type and Classical Mutants is the guide every Drosophila researcher wished they had when first learning genetic markers, and the tool they wish they had now as a handy reference in their lab research. Previously, scientists had only poor-quality images or sketches to work with, and then scattered resources online - but no single visual resource quickly at their fingertips when explaining markers to new members of the lab, or selecting flies to do their genetic crosses, or hybrids. This alphabetized guide to Drosophila genetic markers lays flat in the lab for easy referencing. It contains high-resolution images of flies and the appropriate marker on the left side of each page and helpful information for the marker on the facing page, such as symbol, gene name, synonyms, chromosome location, brief informative description of the morphology, and comments on marker reliability. A companion website with updated information, useful links, and additional data provided by the authors complements this extremely valuable resource. - Provides an opening chapter with a well-illustrated introduction to Drosophila morphology - Features high-resolution illustrations, including those of the most common markers used by Drosophila researchers - Contains brief, practical descriptions and tips for deciphering the phenotype - Includes material relevant for beginners and the most experienced fly pushers




Arabidopsis


Book Description

The recent application of molecular genetics to problems of developmental biology has provided us with greater insight into the molecular mechanisms by which cells determine their developmental fate. This is particularly evident in the recent progress in understanding of developmental processes in model animal systems such as Drosophila melanogaster and Caenorhabditis elegans. De spite the use of plants in some of the earliest genetics experiments, the elucida tion of the molecular bases of plant development has lagged behind that of animal development. However, the emergence of model systems such as Arabi dopsis thaliana, amenable to developmental genetics, has led to the beginning of the unraveling of the mysteries behind plant morphogenesis. This atlas of the morphology and development of the weed Arabidopsis is in tended to be a reference book, both for scientists already familiar with plant anatomy and for those utilizing Arabidopsis who have come from other fields. The primary concentration is on descriptions rather than interpretations, as interpretations evolve and change relatively rapidly, whereas the evolution of plant form takes place on a much longer time scale. Molecular genetics and the use of mutants to probe wild-type gene function rely on the wild-type being well characterized. With this in mind, an attempt was made to present detailed descriptions of wild-type structure and development, to provide a foundation for comparison with the selected mutants in the atlas. More importantly, it is hoped that the atlas will serve as a valuable resource in the characterization of new mutants.




The Embryonic Development of Drosophila melanogaster


Book Description

" . . . but our knowledge is so weak that no philosoph er will ever be able to completely explore the nature of even a fly . . . " * Thornas Aquinas "In Syrnbolurn Apostolorum" 079 RSV p/96 This is a monograph on embryogenesis of the fruit fly Drosophi la melanogaster conceived as a reference book on morphology of embryonie development. A monograph of this extent and con tent is not yet available in the literature of Drosophila embryolo gy, and we believe that there is areal need for it. Thanks to the progress achieved during the last ten years in the fields of devel opmental and molecular genetics, work on Drosophila develop ment has considerably expanded creating an even greater need for the information that we present here. Our own interest for wildtype embryonie development arose several years ago, when we began to study the development of mutants. While those studies were going on we repeatedly had occasion to state in sufficiencies in the existing literature about the embryology of the wildtype, so that we undertook investigating many of these problems by ourselves. Convinced that several of our colleagues will have encountered similar difficulties we decided to publish the present monograph. Although not expressely recorded, Thomas Aquinas probably referred to the domestic fly and not to the fruit fly. Irrespective of which fly he meant, however, we know that Thomas was right in any case.




First in Fly


Book Description

A single species of fly, Drosophila melanogaster, has been the subject of scientific research for more than one hundred years. Why does this tiny insect merit such intense scrutiny? Drosophila’s importance as a research organism began with its short life cycle, ability to reproduce in large numbers, and easy-to-see mutant phenotypes. Over time, laboratory investigation revealed surprising similarities between flies and other animals at the level of genes, gene networks, cell interactions, physiology, immunity, and behavior. Like humans, flies learn and remember, fight microbial infection, and slow down as they age. Scientists use Drosophila to investigate complex biological activities in a simple but intact living system. Fly research provides answers to some of the most challenging questions in biology and biomedicine, including how cells transmit signals and form ordered structures, how we can interpret the wealth of human genome data now available, and how we can develop effective treatments for cancer, diabetes, and neurodegenerative diseases. Written by a leader in the Drosophila research community, First in Fly celebrates key insights uncovered by investigators using this model organism. Stephanie Elizabeth Mohr draws on these “first in fly” findings to introduce fundamental biological concepts gained over the last century and explore how research in the common fruit fly has expanded our understanding of human health and disease.




Behavioral Genetics of the Fly (Drosophila Melanogaster)


Book Description

A comprehensive portrayal of the behaviour genetics of the fruit fly (Drosophila melanogaster) and the methods used in these studies.




Systematics and the Exploration of Life


Book Description

This book's aim is to obtain and organize knowledge about the diversity of living things. Their epistomological and methodological fundamentals are explained in the framework of the biology of evolution. The methods of construction and use of phylogenetic trees are presented as well as the classification and description of taxa with the nomenclature rules.




Brain Development in Drosophila melanogaster


Book Description

The fruitfly Drosophila melanogaster is an ideal model system to study processes of the central nervous system This book provides an overview of some major facets of recent research on Drosophila brain development.




Drosophila


Book Description

Anyone wishing to tap the research potential of the hundreds of Drosophila species in addition to D.melanogaster will finally have a single comprehensive resource for identifying, rearing and using this diverse group of insects. This is the only group of higher eukaryotes for which the genomes of 12 species have been sequenced.The fruitfly Drosophila melanogaster continues to be one of the greatest sources of information regarding the principles of heredity that apply to all animals, including humans. In reality, however, over a thousand different species of Drosophila exist, each with the potential to make their own unique contributions to the rapidly changing fields of genetics and evolution. This book, by providing basic information on how to identify and breed these other fruitflies, will allow investigators to take advantage, on a large scale, of the valuable qualities of these other Drosophila species and their newly developed genomic resources to address critical scientific questions.* Provides easy to use keys and illustrations to identify different Drosophila species* A guide to the life history differences of hundreds of species* Worldwide distribution maps of hundreds of species* Complete recipes for different Drosophila diets* Offers an analysis on how to account for species differences in designing and conducting experiments* Presents useful ideas of how to collect the many different Drosophila species in the wild




Insect Morphology and Phylogeny


Book Description

In the last decades a remarkable renaissance has materialized in insect morphology, mainly triggered by the development of new cutting-edge technologies. This is an exciting time for biological synthesis where the mysteries and data derived from genomes can be combined with centuries of data from morphology and development. And, now, more than ever, detailed knowledge of morphology is essential to understanding the evolution of all groups of organisms. In this “age of phylogenomics” researchers rely on morphological data to support molecular findings, test complex evolutionary scenarios, and for placing fossil taxa. This textbook provides an in-depth treatment of the structures and the phylogeny of the megadiverse Hexapoda. The first part presents an up-to-date overview of general insect morphology with detailed drawings, scanning electron micrographs, and 3-D reconstructions. Also included is a chapter covering innovative morphological techniques (e.g., μ-computer tomography, 3-D modeling), brief treatments of insect development and phylogenetic methods, and a comprehensive morphological glossary. The second part is of a modern synthesis of insect systematics that includes taxon-specific morphological information for all Orders. The work is an invaluable reference for students and researchers working in all facets of biology and is a must for evolutionary biologists. A detailed understanding of morphology is essential in unraveling phylogenetic relationships and developing complex evolutionary scenarios. Increasingly researchers in phylogenomics are re/turning to morphological data to support their findings, while the development of new cutting-edge technologies has further increased interest in this growing field. This definitive handbook provides an in-depth treatment of insect morphology. The first part presents an up-to-date overview of insect morphology with detailed drawings, brilliant scanning electron micrographs and 3-D reconstructions as interactive PDFs. This is complemented by a chapter on innovative morphological techniques (e.g., μ-computer tomography, 3-D modeling) and a comprehensive morphological glossary. The second part treats the state of the art in insect systematics and includes taxon-specific morphological information for all orders. Systematics are treated formally, with for example the arguments for relationships (“apomorphies”) always listed explicitly. The work is a useful reference for students and researchers working in different fields of biology and a must for those dealing with insects from an evolutionary perspective.




Won for All


Book Description

This is the story of the sequencing of the fly genome as told by one of the participants, Michael Ashburner. Written in a diary-like form, half the story is told in numerous footnotes. Ashburner has written a delightful, candid, irreverent, on-the-scene tale filled with eccentric personalities all focused on a single goal. The book also contains an Epilogue that puts Drosophilaas a model system in historical context, and an Afterword that discusses the impact the genome sequence has had on the study of Drosophila.Also included are portraits by Lewis Miller of some of the principal characters. About the author:Michael Ashburner is Professor of Biology in the Department of Genetics at the University of Cambridge. By training and inclination, he is a Drosophilageneticist, although for more than a decade, he has not been where he belongs – the lab bench – but in front of computer screens. He spent six years at the European Bioinformatics Institute, first as the Institute's Research Programme Coordinator, and then as its Joint-Head. He is a Fellow of the Royal Society and an Honorary Foreign Member of the American Academy of Arts and Sciences.