Atlas of Time-temperature Diagrams for Irons and Steels


Book Description

The most comprehensive collection of time-temperature diagrams for irons and steels ever collected. Between this volume and its companion, Atlas of Time Temperature Diagrams for Nonferrous Alloys, you'll find the most comprehensive collection of time-temperature diagrams ever collected. Containing both commonly used curves and out-of-print and difficult-to-find data, these Atlases represent an outstanding worldwide effort, with contributions from experts in 14 countries. Time-temperature diagrams show how metals respond to heating and cooling, allowing you to predict the behavior and know beforehand the sequence of heating and cooling steps to develop the desired properties. These collections are a valuable resource for any materials engineer Both Collections Include: Easy-to-Read Diagrams Isothermal transformation Continuous cooling transformation Time-temperature precipitation Time-temperature embrittlement Time-temperature ordering Materials Included in the Irons and Steels Volume: Low-carbon High Strength Low Alloy Stainless (Maraging, austenitic, ferritic, duplex) Chromium, molybdenum, vanadium, silicon Structural Quenched and tempered Spring and Rail High-temperature creep-resistant Tool and die Eutectoid, hypereutectoid carbon Deep hardening Titanium bearing Irons: Gray cast, malleable, white, white cast, ductile.







Steel Castings Handbook, 6th Edition


Book Description




Microstructure and Properties of Materials


Book Description

This is the second volume of an advanced textbook on microstructure and properties of materials. (The first volume is on aluminum alloys, nickel-based superalloys, metal matrix composites, polymer matrix composites, ceramics matrix composites, inorganic glasses, superconducting materials and magnetic materials). It covers titanium alloys, titanium aluminides, iron aluminides, iron and steels, iron-based bulk amorphous alloys and nanocrystalline materials.There are many elementary materials science textbooks, but one can find very few advanced texts suitable for graduate school courses. The contributors to this volume are experts in the subject, and hence, together with the first volume, it is a good text for graduate microstructure courses. It is a rich source of design ideas and applications, and will provide a good understanding of how microstructure affects the properties of materials.Chapter 1, on titanium alloys, covers production, thermomechanical processing, microstructure, mechanical properties and applications. Chapter 2, on titanium aluminides, discusses phase stability, bulk and defect properties, deformation mechanisms of single phase materials and polysynthetically twinned crystals, and interfacial structures and energies between phases of different compositions. Chapter 3, on iron aluminides, reviews the physical and mechanical metallurgy of Fe3Al and FeAl, the two important structural intermetallics. Chapter 4, on iron and steels, presents methodology, microstructure at various levels, strength, ductility and strengthening, toughness and toughening, environmental cracking and design against fracture for many different kinds of steels. Chapter 5, on bulk amorphous alloys, covers the critical cooling rate and the effect of composition on glass formation and the accompanying mechanical and magnetic properties of the glasses. Chapter 6, on nanocrystalline materials, describes the preparation from vapor, liquid and solid states, microstructure including grain boundaries and their junctions, stability with respect to grain growth, particulate consolidation while maintaining the nanoscale microstructure, physical, chemical, mechanical, electric, magnetic and optical properties and applications in cutting tools, superplasticity, coatings, transformers, magnetic recordings, catalysis and hydrogen storage.




Atlas of Time-temperature Diagrams for Nonferrous Alloys


Book Description

The most comprehensive collection of time-temperature diagrams for nonferrous alloys ever collected. Between this volume and its companion, Atlas of Time Temperature Diagrams for Irons and Steels, you'll find the most comprehensive collection of time-temperature diagrams ever collected. Containing both commonly used curves and out-of-print and difficult-to-find data, these Atlases represent an outstanding worldwide effort, with contributions from experts in 14 countries. Time-temperature diagrams show how metals respond to heating and cooling, allowing you to predict the behavior and know beforehand the sequence of heating and cooling steps to develop the desired properties. These collections are a valuable resource for any materials engineer Both Collections Include: Easy-to-Read Diagrams: Isothermal transformation Continuous cooling transformation Time-temperature precipitation Time-temperature embrittlement Time-temperature ordering




Light Microscopy of Carbon Steels


Book Description

Containing over 1,200 representative micrographs and the information and explanatory text that makes them really useful, including composition, condition, etchant, magnification, and more than 100 graphs and tables, this 'how to' book not only gives everyday working examples, but also discusses the relationship between the constitution, metallurgy, and microstructure of various carbon steel products. Contents: Nomenclature of Phases and Constituents; Phase Transformations; Low-Carbon Irons and Steels; Annealing and Normalizing; Spheroidization and Graphitization; Austenitization; Transformation of Austenite; Tempering of Martensite; Welding; Surface Oxidation, Decarburation and Oxidation Scaling; Glossary of Terms; EtchingMethods; ConversionTables; Index.







Materials Science and Engineering


Book Description

Materials Science and Engineering: An Introduction promotes student understanding of the three primary types of materials (metals, ceramics, and polymers) and composites, as well as the relationships that exist between the structural elements of materials and their properties. The 10th edition provides new or updated coverage on a number of topics, including: the Materials Paradigm and Materials Selection Charts, 3D printing and additive manufacturing, biomaterials, recycling issues and the Hall effect.




Fundamentals of Materials Science and Engineering


Book Description

"This text treats the important properties of the three primary types of materials--metals, ceramics, and polymers--as well as composites, and the relationships that exist between the structural elements of these materials and their properties. Emphasis is placed on mechanical behavior and failure including, techniques that are employed to improve the mechanical and failure characteristics in terms of alteration of structural elements. Furthermore, individual chapters discuss each of corrosion, electrical, thermal, magnetic, and optical properties. New and cutting-edge materials are also discussed. Even if an instructor does not have a strong materials background (i.e., is from mechanical, civil, chemical, or electrical engineering, or chemistry departments), he or she can easily teach from this text. The material is not at a level beyond which the students can comprehend--an instructor would not have to supplement in order to bring the students up to the level of the text. Also, the author has attempted to write in a concise, clear, and organized manner, using terminology that is familiar to the students. Extensive student and instructor resource supplements are also provided."--Publisher's description.