Atomic and Molecular Processes in Fusion Edge Plasmas


Book Description

This well-illustrated resource provides vital cross-section information for the atomic and molecular collision processes taking place in the boundary region of magnetically confined fusion plasmas and in other laboratory and astrophysical low-temperature plasmas. The expertly assessed information in this noteworthy volume includes the most recent experimental and theoretical results presented in a convenient format. Coverage includes the processes of electron-impact excitation and ionization of plasma edge atoms, electron-ion recombination, dissociative collision processes involving electrons and much more.







Molecular Processes in Plasmas


Book Description

A variety of plasmas include molecules rather than only ions or atoms. Examples are ionospheres of the Earth and other planets, stellar atmospheres, gaseous discharges for use in various devices and processes, and fusion plasmas in the edge region. This book describes the role of molecules in those plasmas by showing elementary collision processes involving those molecules.







Survey of Atomic Processes in Edge Plasmas


Book Description

A review of the most important reactions of atomic and molecular hydrogen with the fusion edge plasma electrons and ions is presented. An appropriate characterization of the considered collision processes, useful in plasma edge studies (evaluated cross sections, reaction rates, energy gain/loss per collision, etc.) has been performed. While a complete survey of atomic physics of fusion edge plasmas will be given elsewhere shortly, we demonstrate here the relevance of the atomic collision processes for describing the physical state of edge plasmas and understanding the energy balance in cool divertor plasmas. It is found that the excited neutral species play an important role in the low-temperature, high-density plasmas.




Atomic and Plasma-material Interaction Processes in Controlled Thermonuclear Fusion


Book Description

Atomic and plasma-material interaction processes play an important role in thermonuclear fusion plasmas and the knowledge of these processes has a significant impact on fusion energy research and development. The present volume provides a comprehensive survey of atomic and plasma-material interaction aspects of controlled thermonuclear fusion. The review articles included in this volume describe the role of atomic and plasma-material interaction processes in the currently most active fusion research areas and emphasize the need for accurate quantitative information on these processes for resolving many outstanding issues in fusion research and reactor design development such as plasma energy balance, particle transport and confinement, impurity control, thermal power and helium exhaust, plasma heating and fuelling, edge plasma physics, development of fusion reactor plasma facing components and plasma diagnostics and modelling.




Atomic and Plasma-material Interaction Data for Fusion


Book Description

These publications, arising from a Coordinated Research Project on Atomic and Molecular Data for Plasma Modelling, provide information on new data relevant to the edge region of plasmas in nuclear fusion energy devices. In this region, molecules and molecular ions are formed and react with electrons and with each other and fusion plasma modelling requires cross-sections and rate coefficients for such processes. This volume describes new data and data compilations for atomic and molecular processes that occur in edge plasma and provides data in forms that can be used in plasma modelling codes.




Power Exhaust in Fusion Plasmas


Book Description

A complete and up-to-date summary of power exhaust in fusion plasmas, for academic researchers and graduate students in plasma physics.




Nuclear Fusion Research


Book Description

It became clear in the early days of fusion research that the effects of the containment vessel (erosion of "impurities") degrade the overall fusion plasma performance. Progress in controlled nuclear fusion research over the last decade has led to magnetically confined plasmas that, in turn, are sufficiently powerful to damage the vessel structures over its lifetime. This book reviews current understanding and concepts to deal with this remaining critical design issue for fusion reactors. It reviews both progress and open questions, largely in terms of available and sought-after plasma-surface interaction data and atomic/molecular data related to these "plasma edge" issues.




On the Edge of Magnetic Fusion Devices


Book Description

This book reviews the current state of understanding concerning edge plasma, which bridges hot fusion plasma, with a temperature of roughly one million degrees Kelvin with plasma-facing materials, which have melting points of only a few thousand degrees Kelvin. In a fact, edge plasma is one of the keys to solution for harnessing fusion energy in magnetic fusion devices. The physics governing the processes at work in the edge plasma involves classical and anomalous transport of multispecies plasma, neutral gas dynamics, atomic physics effects, radiation transport, plasma-material interactions, and even the transport of plasma species within the plasma-facing materials. The book starts with simple physical models, then moves on to rigorous theoretical considerations and state-of-the-art simulation tools that are capable of capturing the most important features of the edge plasma phenomena. The authors compare the conclusions arising from the theoretical and computational analysis with the available experimental data. They also discuss the remaining gaps in their models and make projections for phenomena related to edge plasma in magnetic fusion reactors.