Practical Augmented Lagrangian Methods for Constrained Optimization


Book Description

This book focuses on Augmented Lagrangian techniques for solving practical constrained optimization problems. The authors rigorously delineate mathematical convergence theory based on sequential optimality conditions and novel constraint qualifications. They also orient the book to practitioners by giving priority to results that provide insight on the practical behavior of algorithms and by providing geometrical and algorithmic interpretations of every mathematical result, and they fully describe a freely available computational package for constrained optimization and illustrate its usefulness with applications.




Augmented Lagrangian Methods


Book Description

The purpose of this volume is to present the principles of the Augmented Lagrangian Method, together with numerous applications of this method to the numerical solution of boundary-value problems for partial differential equations or inequalities arising in Mathematical Physics, in the Mechanics of Continuous Media and in the Engineering Sciences.










Constrained Optimization and Lagrange Multiplier Methods


Book Description

Computer Science and Applied Mathematics: Constrained Optimization and Lagrange Multiplier Methods focuses on the advancements in the applications of the Lagrange multiplier methods for constrained minimization. The publication first offers information on the method of multipliers for equality constrained problems and the method of multipliers for inequality constrained and nondifferentiable optimization problems. Discussions focus on approximation procedures for nondifferentiable and ill-conditioned optimization problems; asymptotically exact minimization in the methods of multipliers; duality framework for the method of multipliers; and the quadratic penalty function method. The text then examines exact penalty methods, including nondifferentiable exact penalty functions; linearization algorithms based on nondifferentiable exact penalty functions; differentiable exact penalty functions; and local and global convergence of Lagrangian methods. The book ponders on the nonquadratic penalty functions of convex programming. Topics include large scale separable integer programming problems and the exponential method of multipliers; classes of penalty functions and corresponding methods of multipliers; and convergence analysis of multiplier methods. The text is a valuable reference for mathematicians and researchers interested in the Lagrange multiplier methods.




Scale Space and Variational Methods in Computer Vision


Book Description

This book constitutes the refereed proceedings of the Second International Conference on Scale Space Methods and Variational Methods in Computer Vision, SSVM 2009, emanated from the joint edition of the 5th International Workshop on Variational, Geometric and Level Set Methods in Computer Vision, VLSM 2009 and the 7th International Conference on Scale Space and PDE Methods in Computer Vision, Scale-Space 2009, held in Voss, Norway in June 2009. The 71 revised full papers presented were carefully reviewed and selected numerous submissions. The papers are organized in topical sections on segmentation and detection; image enhancement and reconstruction; motion analysis, optical flow, registration and tracking; surfaces and shapes; scale space and feature extraction.




Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers


Book Description

Surveys the theory and history of the alternating direction method of multipliers, and discusses its applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others.




Practical Augmented Lagrangian Methods for Constrained Optimization


Book Description

This book focuses on Augmented Lagrangian techniques for solving practical constrained optimization problems. The authors: rigorously delineate mathematical convergence theory based on sequential optimality conditions and novel constraint qualifications; orient the book to practitioners by giving priority to results that provide insight on the practical behavior of algorithms and by providing geometrical and algorithmic interpretations of every mathematical result; and fully describe a freely available computational package for constrained optimization and illustrate its usefulness with applications.




Numerical Optimization


Book Description

Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.




Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology


Book Description

This book presents the theoretical details and computational performances of algorithms used for solving continuous nonlinear optimization applications imbedded in GAMS. Aimed toward scientists and graduate students who utilize optimization methods to model and solve problems in mathematical programming, operations research, business, engineering, and industry, this book enables readers with a background in nonlinear optimization and linear algebra to use GAMS technology to understand and utilize its important capabilities to optimize algorithms for modeling and solving complex, large-scale, continuous nonlinear optimization problems or applications. Beginning with an overview of constrained nonlinear optimization methods, this book moves on to illustrate key aspects of mathematical modeling through modeling technologies based on algebraically oriented modeling languages. Next, the main feature of GAMS, an algebraically oriented language that allows for high-level algebraic representation of mathematical optimization models, is introduced to model and solve continuous nonlinear optimization applications. More than 15 real nonlinear optimization applications in algebraic and GAMS representation are presented which are used to illustrate the performances of the algorithms described in this book. Theoretical and computational results, methods, and techniques effective for solving nonlinear optimization problems, are detailed through the algorithms MINOS, KNITRO, CONOPT, SNOPT and IPOPT which work in GAMS technology.