Autodesk Inventor 2020: ILogic (Mixed Units): Autodesk Authorized Publisher


Book Description

Autodesk(R) Inventor(R) 2020: iLogic teaches you how to use the iLogic functionality that exists in the Autodesk(R) Inventor(R) 2020 software. In this practice-intensive curriculum, you will acquire the knowledge required to use iLogic to automate Autodesk Inventor designs. In this guide, you will learn how iLogic functionality furthers the use of parameters in a model by adding an additional layer of intelligence. By setting criteria in the form of established rules, you learn how to capture design intent, enabling you to automate the design workflow to meet various design scenarios in part, assembly, and drawing files. Topics Covered iLogic functionality overview. iLogic workflow overview. Review of model and user-defined parameters, and equations and their importance in iLogic. Understanding the iLogic interface components (iLogic Panel, Edit Rule dialog box, and iLogic browser). Rule creation workflow for Autodesk Inventor parts and assemblies. Using variations of conditional statements in an iLogic rule. Accessing and incorporating the various function types into an iLogic part, assembly, or drawing file rule. Event Triggers and iTriggers. Creating Forms to create a custom user interface for an iLogic rule. Prerequisites Access to the 2020.0 version of the software, to ensure compatibility with this guide. Future software updates that are released by Autodesk may include changes that are not reflected in this guide. The practices and files included with this guide are not be compatible with prior versions (i.e., 2019). The class assumes a mastery of Autodesk Inventor basics, as taught in Autodesk Inventor: Introduction to Solid Modeling. The Autodesk Inventor: Advanced Part and Assembly Modeling guides are also highly recommended. No programming knowledge is required to use the basic iLogic functions, but programming experience can be an asset when using advanced functions.










Autodesk Inventor 2020: Advanced Assembly Modeling (Mixed Units)


Book Description

The Autodesk(R) Inventor(R) 2020: Advanced Assembly Modeling guide builds on the skills acquired in the Autodesk Inventor 2020: Introduction to Solid Modeling and Autodesk Inventor 2020: Advanced Part Modeling guides to take you to a higher level of productivity when creating and working with assemblies. You begin by focusing on the Top-Down Design workflow. You learn how tools are used to achieve this workflow using Derive, Multi-Body Design, and Layouts. Other topics include model simplification tools, Positional and Level of Detail Representations, iMates and iAssemblies, Frame Generator, Design Accelerator, and file management and duplication techniques. A chapter has also been included about the Autodesk(R) Inventor(R) Studio to teach you how to render, produce, and animate realistic images. Topics Covered Applying motion to existing assembly constraints using Motion and Transitional Constraints. Introduction of the Top-Down Design technique for creating assemblies and its components. Tools for Top-Down Design, such as associative links, adaptive parts, multi-body and layout design, derived components, and skeleton models. Creating Positional Representations to review motion, evaluate the position of assembly components, or document an assembly in a drawing. Using Shrinkwrap and other model simplification tools to create a part model that represents an overall assembly. Creating Level of Detail Representations to reduce the clutter of large assemblies, reduce retrieval times, and substituting models. Using the Design Accelerator to easily insert standard and customizable components and features into your model. Creating rendered realistic images and animations of parts and assemblies using Autodesk Inventor Studio and the Video Producer. Prerequisites Access to the 2020.0 version of the software, to ensure compatibility with this guide. Future software updates that are released by Autodesk may include changes that are not reflected in this guide. The practices and files included with this guide are not compatible with prior versions (i.e., 2019). The class assumes mastery of Autodesk Inventor basics as taught in Autodesk(R) Inventor(R) Introduction to Solid Modeling. In addition, Autodesk(R) Inventor(R) Advanced Part Modeling knowledge is recommended. The use of Microsoft(R) Excel is required for this guide.




Autodesk Inventor CAM 2022: Milling Fundamentals (Mixed Units)


Book Description

The Autodesk(R) Inventor(R) CAM 2022: Milling Fundamentals guide focuses on instructing new users on how to use the Inventor CAM add-on to create milling toolpaths. The guide begins with an introduction to the overall Inventor interface and explains how to manipulate your 3D model to change its orientation and view display. Through additional hands-on, practice-intensive curriculum, you will learn the key skills and knowledge required to take the 3D model, set it up in the CAM environment, and assign the 2D and 3D milling toolpaths needed to generate the CNC code required by milling machines. Topics Covered Navigate the Inventor software interface to locate and execute commands. Use the model orientation commands to pan, zoom, rotate, and look at a model. Assign visual styles to your models. Locate, modify, and create tools in the Tool Library. Set up machining operations using Inventor CAM. Create 2D Milling, 3D Milling and Drilling toolpaths using the Inventor CAM interface. Use the Simulation option to visualize toolpaths. Import a tool library. Create a toolpath template. Post process an Inventor CAM setup to output the CNC code required to machine a model. Prerequisites Access to the 2022 version of the software, to ensure compatibility with this guide. Future software updates that are released by Autodesk may include changes that are not reflected in this guide. The practices and files included with this guide are not compatible with prior versions (e.g., 2021). As an introductory guide, Autodesk(R) Inventor(R) CAM 2022: Milling Fundamentals does not assume prior knowledge of Autodesk Inventor CAM. However, this guide will not provide instructional content on how to create 3D models using the Inventor modeling tools. Its focus is solely on generating 2D and 3D milling and drilling toolpaths once models are created. The Autodesk(R) Inventor(R) 2022: Introduction to Solid Modeling guide should be used to learn to create 3D models. It is recommended that users have prior experience with the Windows operating system, knowledge of 3D model creation/modification, and an understanding of the CNC milling process.




Autodesk Inventor 2021 Parametric Design and ILogic for Beginners


Book Description

Student, designer, engineer? Start your adventure with Autodesk Inventor This book is intended for people for whom this is the first contact with Autodesk Inventor 2021 software. However, individuals who are familiar with the program will find here useful information about using parametrization techniques for the streamline creation of variants of the product. In this manual, you will find extensive descriptions and detailed illustrations explaining the tools used and the correct workflow techniques. The book presents three examples of the use of the software. Example No 1. Designing a complete product In the first example, you will learn how to work in Inventor, from scratch. You will create a project of a simple drill vise, on which you will learn the basic operations of modeling and creating drawing documentation. This example emphasises the principles of project management, from a single part through designing parts in the context of the assembly, checking the basic kinematics of the product, and further creating a complete drawing documentation containing item numbers and a parts list, as well as an exploding view of the product, rendered illustration and video for marketing purposes. Then, thanks to the program parameterization and skillful file management, you will quickly create a new version of the drill vise with a complete set of drawing documentation as well as a rendered illustration and video of the new version of the product. Example No 2. Component libraries Most of the products being designed, use components purchased from external suppliers. For this reason, parametric 3D models of purchased components, which can be quickly inserted into the project instead of modeling each time from scratch, offer the greatest possible convenience for the constructor. In addition, component library files should be properly described, so that they are correctly presented in the bill of materials and also it should be placed in the library resources area, which will protect them from accidental editing. The examples presented here will teach you how to prepare your own parametric libraries of purchased components. Example No 3. The parametric generator of product versions In the third example, you will create a parametric generator for making a simple metal casing that allows you to obtain a model of any size, with or without handles and pre-prepared drawing documentation for each version. The generated version of the casing can be further modified in order to obtain the final appearance. In this example, you will learn the basics of designing sheet metal parts, the use of parameters in parts and in the assembly, and you will learn the basics of programming using iLogic and how to use iLogic parametric version generators. And... No additional files for download are required to complete the designs described - all files will be created from scratch in the exercises in sequence. Most of this manual is also compatible with previous versions of Inventor. The completed Table of Contents of this book and set of illustrations of the examples used in the book you can find on: www.expertbooks.eu.




Autodesk Inventor 2021 Basics Tutorial


Book Description

A step-by-step tutorial on Autodesk Inventor basics Autodesk Inventor is used by design professionals for 3D modeling, generating 2D drawings, finite element analysis, mold design, and other purposes. This tutorial is aimed at novice users of Inventor and gives you all the basic information you need so you can get the essential skills to work in Autodesk Inventor immediately. This book will get you started with the basics of part modeling, assembly modeling, presentations, and drawings. Next, it teaches you some intermediate-level topics such as additional part modeling tools, sheet metal modeling, top-down assembly feature, assembly joints, dimension & annotations, model-based dimensioning, frame generator. Brief explanations, practical examples, and stepwise instructions make this tutorial complete.




Autodesk Inventor 2020: Advanced Part Modeling (Mixed Units)


Book Description

Autodesk(R) Inventor(R) 2020: Advanced Part Modeling is the second in a series of guides on the Autodesk(R) Inventor(R) software that is published by ASCENT. The goal of this guide is to build on the skills acquired in the Autodesk Inventor: Introduction to Solid Modeling learning guide by taking users to a higher level of productivity when designing part models using the Autodesk Inventor software. In this guide, the user considers various approaches to part design. Specific advanced part modeling techniques covered include: multi-body design, advanced lofts, advanced sweeps, coils, generative shape design, surface modeling, and Freeform modeling. Material aimed at increasing efficiency includes: iFeatures for frequently used design elements, iParts for similar designs, and how to work with imported data. The guide also covers some miscellaneous drawing tools, such as: custom sketches symbols, working with title blocks and borders, and documenting iParts. Topics Covered Advanced model appearance options 2D and 3D sketching techniques Multi-body part modeling Advanced geometry creation tools (work features, area lofts, sweeps, and coils) Analysis tools Generative shape design using Shape Generator Creating and editing basic surfaces, importing surfaces, and surface repair tools iFeatures and iParts Importing data from other CAD systems and making edits Working with AutoCAD DWG files Freeform modeling Emboss and Decal features Advanced Drawing tools (iPart tables, surfaces in drawing views, and custom sketched symbols) Adding notes with the Engineer's Notebook Prerequisites Access to the 2020.0 version of the software (or later). The practices and files included with this guide are not compatible with prior versions. Future software updates that are released by Autodesk may include changes that will not be reflected in this guide. The material assumes a mastery of Autodesk Inventor basics, as taught in Autodesk(R) Inventor(R) Introduction to Solid Modeling. Users should know how to create and edit parts, use work features, create and annotate drawing views, etc. The use of Microsoft Excel is required for this guide.




3D Printing with Autodesk


Book Description

3D Printing with Autodesk Create and Print 3D Objects with 123D, AutoCAD, and Inventor Create amazing 3D-printable objects fast with Autodesk 123D! Imagine it. Then print it! Autodesk 123D gives you all the tools you need and it’s free. This easy, full-color guide will help you fully master 3D printing with Autodesk 123D even if you’ve never done any of this before. Authors John Biehler and Bill Fane have helped thousands of people join the 3D printing revolution—now it’s your turn. With step-by-step photos and simple projects, they teach you how to make the most of the whole 123D suite on Windows, Mac, and iPad. New to 3D printing? You’ll learn pro techniques for creating models that print perfectly the first time. Want to start fast? Discover how to scan photos straight into your models. Don’t have a 3D printer? Learn how to work with today’s most popular 3D printing services. John Biehler discovered 3D printing several years ago and built his first 3D printer shortly thereafter. Since then, he’s shared his 3D printing knowledge with thousands of people at live events throughout Canada and the Pacific Northwest and through online and broadcast media. He co-founded Vancouver’s fastest-growing group of 3D printing enthusiasts. Bill Fane, an Autodesk Authorized Training Centre (ATC) certified instructor, has designed with AutoCAD since 1986. Fane has lectured on AutoCAD and Inventor at Autodesk University since 1995, and at Destination Desktop since 2003. He has written 220 The Learning Curve AutoCAD tutorials for CADalyst and holds 12 patents. From start to finish, 3D Printing with Autodesk 123D covers all you need to know. So stop waiting and start creating! Quickly get comfortable with the 123D workspace and key features Learn the essentials of effective 3D object design Practice 3D design hands-on with simple guided exercises Generate detailed models from photos with 123D Catch Create new 3D character “monsters” with 123D Creature Prepare any 3D model for successful printing Move from existing 3D CAD tools (if you’ve ever used them) Design parts that are easy to print, and multi-part models that can be printed “pre-assembled” Print through leading 3D printing services such as Shapeways, Ponoko, Fablab, and Hackerspaces




Autodesk Inventor 2020: Introduction to Solid Modeling (Mixed Units) - Part 1


Book Description

Note: This book is continued in Autodesk(R) Inventor(R) 2020: Introduction to Solid Modeling - Part 2. The Autodesk(R) Inventor(R) 2020: Introduction to Solid Modeling guide provides you with an understanding of the parametric design philosophy through a hands-on, practice-intensive curriculum. You will learn the key skills and knowledge required to design models using Autodesk Inventor, starting with conceptual sketching, through to solid modeling, assembly design, and drawing production. Topics Covered Understanding the Autodesk Inventor software interface Creating, constraining, and dimensioning 2D sketches Creating and editing the solid base 3D feature from a sketch Creating and editing secondary solid features that are sketched and placed Creating equations and working with parameters Manipulating the display of the model Resolving feature failures Duplicating geometry in the model Placing and constraining/connecting parts in assemblies Manipulating the display of components in an assembly Obtaining model measurements and property information Creating Presentation files (Exploded views) Modifying and analyzing the components in an assembly Simulating motion in an assembly Creating parts and features in assemblies Creating and editing an assembly Bill of Materials Working with projects Creating and annotating drawings and views Customizing the Autodesk Inventor environment Prerequisites Access to the 2020 version of the software. The practices and files included with this guide might not be compatible with prior versions. As an introductory guide, Autodesk(R) Inventor(R) 2020: Introduction to Solid Modeling does not assume prior knowledge of any 3D modeling or CAD software. You need to be experienced with the Windows operating system, and having a background in drafting of 3D parts is recommended.