Automatic Control of Aircraft and Missiles


Book Description

This Second Edition continues the fine tradition of its predecessor by exploring the various automatic control systems in aircraft and on board missiles. Considerably expanded and updated, it now includes new or additional material on: the effectiveness of beta-beta feedback as a method of obtaining coordination during turns using the F-15 as the aircraft model; the root locus analysis of a generic acceleration autopilot used in many air-to-air and surface-to-air guided missiles; the guidance systems of the AIM-9L Sidewinder as well as bank-to-turn missiles; various types of guidance, including proportional navigation and line-of-sight and lead-angle command guidance; the coupling of the output of a director fire control system into the autopilot; the analysis of multivariable control systems; and methods for modeling the human pilot, plus the integration of the human pilot into an aircraft flight control system. Also features many new additions to the appendices.







Missile Guidance and Control Systems


Book Description

Airborne Vehicle Guidance and Control Systems is a broad and wide- angled engineering and technological area for research, and continues to be important not only in military defense systems but also in industrial process control and in commercial transportation networks such as various Global Positioning Systems (GPS). The book fills a long-standing gap in the literature. The author is retired from the Air Force Institute and received the Air Force's Outstanding Civilian Career Service Award.







Robust Control


Book Description

New results, fresh ideas and new applications in automotive and flight control systems are presented in this second edition of Robust Control. The book presents parametric methods and tools for the simultaneous design of several representative operating conditions and several design specifications in the time and frequency domains. It also covers methods for robustness analysis that guarantee the desired properties for all possible values of the plant uncertainty. A lot of practical application experience enters into the case studies of driver support systems that avoid skidding and rollover of cars, automatic car steering systems, flight controllers for unstable aircraft and engine-out controllers. The book also shows the historic roots of the methods, their limitations and research needs in robust control.




Advanced Control of Aircraft, Spacecraft and Rockets


Book Description

Advanced Control of Aircraft, Spacecraft and Rockets introduces the reader to the concepts of modern control theory applied to the design and analysis of general flight control systems in a concise and mathematically rigorous style. It presents a comprehensive treatment of both atmospheric and space flight control systems including aircraft, rockets (missiles and launch vehicles), entry vehicles and spacecraft (both orbital and attitude control). The broad coverage of topics emphasizes the synergies among the various flight control systems and attempts to show their evolution from the same set of physical principles as well as their design and analysis by similar mathematical tools. In addition, this book presents state-of-art control system design methods - including multivariable, optimal, robust, digital and nonlinear strategies - as applied to modern flight control systems. Advanced Control of Aircraft, Spacecraft and Rockets features worked examples and problems at the end of each chapter as well as a number of MATLAB / Simulink examples housed on an accompanying website at http://home.iitk.ac.in/~ashtew that are realistic and representative of the state-of-the-art in flight control.







Control of Aircraft and Missile Powerplants


Book Description

En beskrivelse og analyse af en række kontrolsystemer til fly- og raketmotorer.