Auxetic Materials and Structures


Book Description

This book lays down the foundation on the mechanics and design of auxetic solids and structures, solids that possess negative Poisson’s ratio. It will benefit two groups of readers: (a) industry practitioners, such as product and structural designers, who need to control mechanical stress distributions using auxetic materials, and (b) academic researchers and students who intend to produce unique mechanical and other physical properties of structures using auxetic materials.




Handbook of Mechanics of Materials


Book Description

This book provides a comprehensive reference for the studies of mechanical properties of materials over multiple length and time scales. The topics include nanomechanics, micromechanics, continuum mechanics, mechanical property measurements, and materials design. The handbook employs a consistent and systematic approach offering readers a user friendly reference ideal for frequent consultation. It is appropriate for an audience at of graduate students, faculties, researchers, and professionals in the fields of Materials Science, Mechanical Engineering, Civil Engineering, Engineering Mechanics, and Aerospace Engineering.




Mechanics of Auxetic Materials and Structures


Book Description

Mechanics of Auxetic Materials and Structures offers a wide range of application-based and practical considerations of smart materials and auxetic materials in engineering structures. Exploring the analytical and numerical solution procedures, the book discusses crucial characteristics of metamaterials and their response to external factors. Covering the effect of different parameters and external factors on the mechanics of auxetic materials and structures, the book considers the benefits leading to better fracture resistance, toughness, shear modulus, and acoustic response. The book serves as a reference for senior undergraduate and graduate students studying civil engineering, mechanical engineering, and materials science and taking courses in smart materials, metamaterials, and mechanics of materials.




Auxetic Textiles


Book Description

Auxetic Textiles provides a detailed introduction to the basic properties of auxetic materials and how they differ from conventional materials, particularly auxetic textiles, such as polymers, fibers, yarns, fabrics and textile composites. The book discusses the beneficial properties of auxetic structures in textiles and how to translate those benefits into actual materials development. Sections cover the deformation mechanism of textile structures to achieve auxetic behavior and the modelling and simulation of auxetic textile structures. Finally, the book provides expert insights into potential application areas. Cutting across textiles disciplines, from technical textiles and advanced composites, to fashion and design, the book is a valuable introduction to the field for newcomers, with potent insights into the potential of these materials. - Introduces the concept of auxetic materials and their differences from conventional materials - Provides a practical guide to the mechanics of achieving auxetic properties in textile materials, including polymers, fibers, yarns, fabrics and composites - Reviews and links up research and development in auxetic materials with the textile industry, helping enable the development of a range of new applications




Mechanics of Metamaterials with Negative Parameters


Book Description

This book discusses bulk solids that derive their mechanical properties not from those of their base materials, but from their designed microstructures. Focusing on the negative mechanical properties, it addresses topics that reveal the counter-intuitive nature of solids, specifically the negativity of properties that are commonly positive, such as negative bulk modulus, negative compressibility, negative hygroexpansion, negative thermal expansion, negative stiffness phase, and negative Poisson’s ratio. These topics are significant not only due to the curiosity they have sparked, but also because of the possibility of designing materials and structures that can behave in ways that are not normally expected in conventional solids, and as such, of materials that can outperform solids and structures made from conventional materials. The book includes illustrations to facilitate learning, and, where appropriate, reference tables. The presentation is didactic, starting with simple cases, followed by increasingly complex ones. It provides a solid foundation for graduate students, and a valuable resource for practicing materials engineers seeking to develop novel materials through the judicious design of microstructures and their corresponding mechanisms.




Cellular Solids


Book Description

In this new edition of their classic work on Cellular Solids, the authors have brought the book completely up to date, including new work on processing of metallic and ceramic foams and on the mechanical, electrical and acoustic properties of cellular solids. Data for commercially available foams are presented on material property charts; two new case studies show how the charts are used for selection of foams in engineering design. Over 150 references appearing in the literature since the publication of the first edition are cited. The text summarises current understanding of the structure and mechanical behaviour of cellular materials, and the ways in which they can be exploited in engineering design. Cellular solids include engineering honeycombs and foams (which can now be made from polymers, metals, ceramics and composites) as well as natural materials, such as wood, cork and cancellous bone.




Dynamics of Lattice Materials


Book Description

Provides a comprehensive introduction to the dynamic response of lattice materials, covering the fundamental theory and applications in engineering practice Offers comprehensive treatment of dynamics of lattice materials and periodic materials in general, including phononic crystals and elastic metamaterials Provides an in depth introduction to elastostatics and elastodynamics of lattice materials Covers advanced topics such as damping, nonlinearity, instability, impact and nanoscale systems Introduces contemporary concepts including pentamodes, local resonance and inertial amplification Includes chapters on fast computation and design optimization tools Topics are introduced using simple systems and generalized to more complex structures with a focus on dispersion characteristics




Handbook of Fibrous Materials, 2 Volumes


Book Description

Edited by a leading expert in the field with contributions from experienced researchers in fibers and textiles, this handbook reviews the current state of fibrous materials and provides a broad overview of their use in research and development. Volume One focuses on the classes of fibers, their production and characterization, while the second volume concentrates on their applications, including emerging ones in the areas of energy, environmental science and healthcare. Unparalleled knowledge of high relevance to academia and industry.




Composite Solutions for Ballistics


Book Description

Academic researchers who are working on the development of composite materials for ballistic protection need a deeper understanding on the theory of material behavior during ballistic impact. Those working in industry also need to select proper composite constituents, to achieve their desired characteristics to make functional products. Composite Solutions for Ballistics covers the different aspects of ballistic protection, its different levels and the materials and structures used for this purpose. The emphasis in the book is on the application and use of composite materials for ballistic protection. The chapters provide detailed information on the various types of impact events and the complexity of materials to respond to those events. The characteristics of ballistic composites and modelling and simulation results will enable the reader to better understand impact mechanisms according to the theory of dynamic material behavior. A complete description of testing conditions is also given that includes sensors and high-speed devices to monitor ballistic events. The book includes detailed approaches and schemes that can be implemented in academic research into solutions for ballistic protection in both theoretical and experimental fields, to find solutions for existing and next generation threats. The book will be an essential reference resource for materials scientists and engineers, and academic and industrial researchers working in composite materials and textiles for ballistic protection, as well as postgraduate students on materials science, textiles and mechanical engineering courses. - Discusses the fundamentals of impact response mechanisms and related solutions covering advantages and disadvantages for both existing and next generation applications - Includes various methods for evaluation of ballistic constituents according to economic and environmental criteria, types of green ballistics are considered to enhance sustainable production of applications as well as hybrid composites from natural wastes - Discusses selection methodologies for ballistic applications and detailed information on the use of textiles for reinforcement fabrication




Biodegradable Polymer Blends and Composites from Renewable Resources


Book Description

Biodegradable Polymer Blends and Composites from Renewable Resources provides a comprehensive, current overview of biopolymeric blends and composites and their applications in various industries. The book is organized according to the type of blend or composite. For each topic, the relationship between the structure of the blends/composites and their respective properties is explored, with particular focus on interface, compatibility, mechanical, and thermal properties. Real-life applications and potential markets are discussed. This is a premier reference for graduate students and researchers in polymer science, chemical and bio engineering, and materials science.