Balanced Microwave Filters


Book Description

This book presents and discusses strategies for the design and implementation of common-mode suppressed balanced microwave filters, including, narrowband, wideband, and ultra-wideband filters This book examines differential-mode, or balanced, microwave filters by discussing several implementations of practical realizations of these passive components. Topics covered include selective mode suppression, designs based on distributed and semi-lumped approaches, multilayer technologies, defect ground structures, coupled resonators, metamaterials, interference techniques, and substrate integrated waveguides, among others. Divided into five parts, Balanced Microwave Filters begins with an introduction that presents the fundamentals of balanced lines, circuits, and networks. Part 2 covers balanced transmission lines with common-mode noise suppression, including several types of common-mode filters and the application of such filters to enhance common-mode suppression in balanced bandpass filters. Next, Part 3 examines wideband and ultra-wideband (UWB) balanced bandpass filters with intrinsic common-mode suppression. Narrowband and dual-band balanced bandpass filters with intrinsic common-mode suppression are discussed in Part 4. Finally, Part 5 covers other balanced circuits, such as balanced power dividers and combiners, and differential-mode equalizers with common-mode filtering. In addition, the book: Explores a research topic of increasing interest due to the growing demand of balanced transmission lines and circuits in modern communication systems Includes contributions from prominent worldwide experts in the field Provides readers with the necessary knowledge to analyze and synthesize balanced filters and circuits Balanced Microwave Filters is an important text for R&D engineers, professionals, and specialists working on the topic of microwave filters. Post graduate students and Masters students in the field of microwave engineering and wireless communications, especially those involved in courses related to microwave filters, and balanced filters and circuits will also find it to be a vital resource.




Balanced Microwave Filters


Book Description

This book presents and discusses strategies for the design and implementation of common-mode suppressed balanced microwave filters, including, narrowband, wideband, and ultra-wideband filters This book examines differential-mode, or balanced, microwave filters by discussing several implementations of practical realizations of these passive components. Topics covered include selective mode suppression, designs based on distributed and semi-lumped approaches, multilayer technologies, defect ground structures, coupled resonators, metamaterials, interference techniques, and substrate integrated waveguides, among others. Divided into five parts, Balanced Microwave Filters begins with an introduction that presents the fundamentals of balanced lines, circuits, and networks. Part 2 covers balanced transmission lines with common-mode noise suppression, including several types of common-mode filters and the application of such filters to enhance common-mode suppression in balanced bandpass filters. Next, Part 3 examines wideband and ultra-wideband (UWB) balanced bandpass filters with intrinsic common-mode suppression. Narrowband and dual-band balanced bandpass filters with intrinsic common-mode suppression are discussed in Part 4. Finally, Part 5 covers other balanced circuits, such as balanced power dividers and combiners, and differential-mode equalizers with common-mode filtering. In addition, the book: Explores a research topic of increasing interest due to the growing demand of balanced transmission lines and circuits in modern communication systems Includes contributions from prominent worldwide experts in the field Provides readers with the necessary knowledge to analyze and synthesize balanced filters and circuits Balanced Microwave Filters is an important text for R&D engineers, professionals, and specialists working on the topic of microwave filters. Post graduate students and Masters students in the field of microwave engineering and wireless communications, especially those involved in courses related to microwave filters, and balanced filters and circuits will also find it to be a vital resource.







Reflectionless Filters


Book Description

This invaluable resource introduces progressive techniques for the creation of sophisticated reflectionless filter topologies that have identically zero reflection coefficient at all frequencies. Practical implementations are discussed along with their advantages when compared to classical absorptive filters and their benefits in real-world systems such as up/down converters, multiplier chains, broadband amplifiers, analog-to-digital converters, and time-domain applications. This book offers insight into the innovative process of developing reflectionless filters from first principles using both lumped elements and transmission lines. Tools for the creation of reflectionless multiplexers, matched sloped equalizers, and advanced, high-order, and nonplanar topologies are also presented.




Microwave Filters and Circuits


Book Description

Microwave Filters and Circuits: Contributions from Japan covers ideas and novel circuits used to design microwave filter that have been developed in Japan, as well as network theory into the field of microwave transmission networks. The book discusses the general properties and synthesis of transmission-line networks; transmission-line filters on the image-parameter basis; and experimental results on a class of transmission-line filter constructed only with commensurate TEM lossless transmission lines. The text describes lines constants, approximation problems in transmission-line networks, as well as an analysis of coupled-line networks. The general treatment of multiwire networks and the rational or irrational basic sections in multiwire networks are also considered. The book further tackles data on resonator filters as well as miscellaneous multiwire networks. Microwave engineers and electrical engineers will find the book invaluable.




Microwave Engineering Handbook: Microwave circuits, antennas, and propagation


Book Description

This second volume of the three-volume complete reference on microwave engineering covers all of the major circuit types used in microwave systems, and also covers antennas and propagation, an area vital to microwave systems. The emphasis is on fundamental principles and practical hardware, providing a wealth of information for engineers and system designers. Annotation copyright by Book News, Inc., Portland, OR




High-Temperature Superconducting Microwave Circuits and Applications


Book Description

High-temperature superconducting (HTS) materials are becoming more and more attractive in the context of designing RF/microwave filters because of their lower losses and excellent performance. This book focuses on the superconducting microwave filter and its application in modern communication. It first presents the basic principles, HTS materials and processing and then introduces several types of multi-band HTS bandpass filter (BPF), discussing their properties and analyzing equivalent circuit models and their performances. This book is a valuable resource for students and researchers who are interested in wireless communication and RF/microwave design.




Design and Realizations of Miniaturized Fractal Microwave and RF Filters


Book Description

An in-depth survey of the design and REALIZATIONS of miniaturized fractal microwave and RF filters Engineers are continually searching for design methods that can satisfy the ever-increasing demand for miniaturization, accuracy, reliability, and fast development time. Design and Realizations of Miniaturized Fractal RF and Microwave Filters provides RF and microwave engineers and researchers, advanced graduate students, and wireless and telecommunication engineers with the knowledge and skills to design and realize miniaturized fractal microwave and RF filters. This book is an essential resource for the realization of portable and cellular phones, WiFi, 3G and 4G, and satellite networks. The text focuses on the synthesis and fabrication of miniaturized fractal filters with symmetrical and asymmetrical frequency characteristics in the C, X and Ku bands, though applications to other frequency bands are considered. Readers will find helpful guidance on: Miniaturized filters in bilevel fashion Simplified methods for the synthesis of pseudo-elliptic electrical networks Methods for extracting coupling coefficients and external quality factors from simulations of the RF/microwave structure Methods for matching theoretical couplings to couplings of structure Including studies of the real-world performance of fractal resonators and sensitivity analyses of suspended substrate realizations, this is a definitive resource for both practicing engineers and students who need timely insight on fractal resonators for compact and low-power microwave and RF applications.




Stripline-like Transmission Lines for Microwave Integrated Circuits


Book Description

Stripline-Like Transmission Lines For Microwave Integrated Circuits Offers A Unique Combination Of A Textbook And A Design Data Handbook. It Provides An Exhaustive Coverage Of The Analysis, Design And Applications Of Stripline-Like Transmission Lines. Starting From The Fundamental Principles, The Book Builds Up On Analytical Techniques Towards The Solution Of Various Structures In A Lucid And Systematic Manner So As To Be Of Direct Utility For Classroom Teaching. Both Quasi- Static And Hybrid-Mode Analyses Are Included. A Unified Analytical Technique Is Developed Which Is Then Applied To A Class Of Single Conductor, Edge-Coupled Andbroadside-Coupled Structures Using Isotropic/Anisotropic Substrates. The Same Technique Is Extended To Analyse Rectangular Conductor Patches, Open-Circuit End Effects And Gap Capacitances In These Structures. The Analyses Of Losses And Details Of Power Handling Capability Are Also Presented. For R & D Engineers Involved In Mic Design, The Book Offers Unified Formulas And Closed Form Expressions Which Are Readily Programmable, Graphical Illustrations And Extensive Tables Of Data On Propagation Parameters For A Wide Variety Of Practical Structures Using Commercially Available Dielectric Substrates. The Book Concludes With A Chapter On Circuit Applications Which Discusses The Constructional Features, Transitions To Coaxial Lines And Waveguides, And Design Aspects Of A Member Of Mic Components--Couplers, Hybrids, Baluns, Power Dividers, Filters, Pin Diode Switches, Attenuators And Phase Shifters, And Mixers.




Artificial Transmission Lines for RF and Microwave Applications


Book Description

This book presents and discusses alternatives to ordinary transmission lines for the design and implementation of advanced RF/microwave components in planar technology. This book is devoted to the analysis, study and applications of artificial transmission lines mostly implemented by means of a host line conveniently modified (e.g., with modulation of transverse dimensions, with etched patterns in the metallic layers, etc.) or with reactive loading, in order to achieve novel device functionalities, superior performance, and/or reduced size. The author begins with an introductory chapter dedicated to the fundamentals of planar transmission lines. Chapter 2 is focused on artificial transmission lines based on periodic structures (including non-uniform transmission lines and reactively-loaded lines), and provides a comprehensive analysis of the coupled mode theory. Chapters 3 and 4 are dedicated to artificial transmission lines inspired by metamaterials, or based on metamaterial concepts. These chapters include the main practical implementations of such lines and their circuit models, and a wide overview of their RF/microwave applications (including passive and active circuits and antennas). Chapter 5 focuses on reconfigurable devices based on tunable artificial lines, and on non-linear transmission lines. The chapter also introduces several materials and components to achieve tuning, including diode varactors, RF-MEMS, ferroelectrics, and liquid crystals. Finally, Chapter 6 covers other advanced transmission lines and wave guiding structures, such as electroinductive-/magnetoinductive-wave lines, common-mode suppressed balanced lines, lattice-network artificial lines, and substrate integrated waveguides. Artificial Transmission Lines for RF and Microwave Applications provides an in-depth analysis and discussion of artificial transmission lines, including design guidelines that can be useful to researchers, engineers and students.