Fundamentals of Air Pollution Engineering


Book Description

A rigorous and thorough analysis of the production of air pollutants and their control, this text is geared toward chemical and environmental engineering students. Topics include combustion, principles of aerosol behavior, theories of the removal of particulate and gaseous pollutants from effluent streams, and air pollution control strategies. 1988 edition.Reprint of the Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1988 edition.




Reducing Particulate Emissions in Gasoline Engines


Book Description

For years, diesel engines have been the focus of particulate matter emission reductions. Now, however, modern diesel engines emit less particles than a comparable gasoline engine. This transformation necessitates an introduction of particulate reduction strategies for the gasoline-powered vehicle. Many strategies can be leveraged from diesel engines, but new combustion and engine control technologies will be needed to meet the latest gasoline regulations across the globe. Particulate reduction is a critical health concern in addition to the regulatory requirements. This is a vital issue with real-world implications. Reducing Particulate Emissions in Gasoline Engines encompasses the current strategies and technologies used to reduce particulates to meet regulatory requirements and curtail health hazards - reviewing principles and applications of these techniques. Highlights and features in the book include: Gasoline particulate filter design, function and applications Coated and uncoated three way catalyst design and integration Measurement of gasoline particulate matter emission, both laboratory and PEMS The goal is to provide a comprehensive assessment of gasoline particulate emission control to meet regulatory and health requirements - appealing to calibration, development and testing engineers alike.




Gasoline Engine with Direct Injection


Book Description

Direct injection spark-ignition engines are becoming increasingly important, and their potential is still to be fully exploited. Increased power and torque coupled with further reductions in fuel consumption and emissions will be the clear trend for future developments. From today’s perspective, the key technologies driving this development will be new fuel injection and combustion processes. The book presents the latest developments, illustrates and evaluates engine concepts such as downsizing and describes the requirements that have to be met by materials and operating fluids. The outlook at the end of the book discusses whether future spark-ignition engines will achieve the same level as diesel engines.




Automotive Spark-Ignited Direct-Injection Gasoline Engines


Book Description

The process of fuel injection, spray atomization and vaporization, charge cooling, mixture preparation and the control of in-cylinder air motion are all being actively researched and this work is reviewed in detail and analyzed. The new technologies such as high-pressure, common-rail, gasoline injection systems and swirl-atomizing gasoline fuel injections are discussed in detail, as these technologies, along with computer control capabilities, have enabled the current new examination of an old objective; the direct-injection, stratified-charge (DISC), gasoline engine. The prior work on DISC engines that is relevant to current GDI engine development is also reviewed and discussed. The fuel economy and emission data for actual engine configurations have been obtained and assembled for all of the available GDI literature, and are reviewed and discussed in detail. The types of GDI engines are arranged in four classifications of decreasing complexity, and the advantages and disadvantages of each class are noted and explained. Emphasis is placed upon consensus trends and conclusions that are evident when taken as a whole; thus the GDI researcher is informed regarding the degree to which engine volumetric efficiency and compression ratio can be increased under optimized conditions, and as to the extent to which unburned hydrocarbon (UBHC), NOx and particulate emissions can be minimized for specific combustion strategies. The critical area of GDI fuel injector deposits and the associated effect on spray geometry and engine performance degradation are reviewed, and important system guidelines for minimizing deposition rates and deposit effects are presented. The capabilities and limitations of emission control techniques and after treatment hardware are reviewed in depth, and a compilation and discussion of areas of consensus on attaining European, Japanese and North American emission standards presented. All known research, prototype and production GDI engines worldwide are reviewed as to performance, emissions and fuel economy advantages, and for areas requiring further development. The engine schematics, control diagrams and specifications are compiled, and the emission control strategies are illustrated and discussed. The influence of lean-NOx catalysts on the development of late-injection, stratified-charge GDI engines is reviewed, and the relative merits of lean-burn, homogeneous, direct-injection engines as an option requiring less control complexity are analyzed.




Experimental Investigations on Particle Number Emissions from GDI Engines


Book Description

This thesis discusses experimental investigations to reduce particle number emissions from gasoline engines with direct injection. Measures on a single cylinder research engine with combined usage of a particle number measurement system, a particle size distribution measurement system as well as optical diagnostics and thermodynamic analysis enable an in-depth assessment of particle formation and oxidation. Therefore, numerous optical diagnostic techniques for spray visualisation (Mie-scattering, High-Speed PIV) and soot detection (High-Speed-Imaging, Fiber optical diagnostics) are deployed. Two injectors with different hydraulic flows but identical spray-targeting are characterised and compared by measurements in a pressurised chamber. The operation at higher engine load and low engine speed is in the focus of the experimental work at the engine test bench. Thereby, the low flow velocities in the combustion chamber, caused by the low engine speed, as well as the large amount of fuel injected are major challenges for the mixture formation process. A substantial part of the thesis thus focusses on the detailed analysis of the mixture formation process, which is consisting of fuel injection, interaction of the in-cylinder charge motion with the fuel injected and the fuel properties. Measures for the optimisation of the mixture formation process and the minimisation of the particle number emissions are analysed and evaluated. The charge motion is manipulated by the impression of a directed flow, the variation of the valve timings and valve open curve. The injection process is influenced by a reduction of the hydraulic flow of the injector and an increase of the injection pressure up to 50 MPa. The investigations show fundamental effects and potentials of different variation parameters concerning their emissions reduction potential at the exemplary operation at high engine load. Due to the simultaneous analysis of the in-cylinder charge motion and a thermodynamic analysis, the results can be transferred to different engines.




Charging the Internal Combustion Engine


Book Description

This book covers all aspects of supercharging internal combustion engines. It details charging systems and components, the theoretical basic relations between engines and charging systems, as well as layout and evaluation criteria for best interaction. Coverage also describes recent experiences in design and development of supercharging systems, improved graphical presentations, and most advanced calculation and simulation tools.




NOx Emission Control Technologies in Stationary and Automotive Internal Combustion Engines


Book Description

NOx Emission Control Technologies in Stationary and Automotive Internal Combustion Engines: Approaches Toward NOx Free Automobiles presents the fundamental theory of emission formation, particularly the oxides of nitrogen (NOx) and its chemical reactions and control techniques. The book provides a simplified framework for technical literature on NOx reduction strategies in IC engines, highlighting thermodynamics, combustion science, automotive emissions and environmental pollution control. Sections cover the toxicity and roots of emissions for both SI and CI engines and the formation of various emissions such as CO, SO2, HC, NOx, soot, and PM from internal combustion engines, along with various methods of NOx formation. Topics cover the combustion process, engine design parameters, and the application of exhaust gas recirculation for NOx reduction, making this book ideal for researchers and students in automotive, mechanical, mechatronics and chemical engineering students working in the field of emission control techniques. - Covers advanced and recent technologies and emerging new trends in NOx reduction for emission control - Highlights the effects of exhaust gas recirculation (EGR) on engine performance parameters - Discusses emission norms such as EURO VI and Bharat stage VI in reducing global air pollution due to engine emissions




Experimental root cause analysis of low-speed pre-ignition mechanisms on a turbocharged gasoline engine with direct-injection


Book Description

The concept of increasing power density is a successful approach to improving the conflict between efficiency and emission behavior of spark-ignition engine drive units for light-duty vehicles. This leads to highly charged gasoline engines with direct injection and high specific torque and power densities, promoting a not yet fully understood combustion anomaly known as low-speed pre-ignition (LSPI). This unpredictable, multicyclic phenomenon limits the depictable in-cylinder pressures, further efficiency gains and engine reliability. Only with a holistic understanding of the LSPI root cause mechanisms and processes can targeted countermeasures be taken and further efficiency gains achieved. A novel methodology pathway for LSPI root cause analysis was developed to accompany the entire LSPI event emergence process path by means of a multi-experimental approach on a modern high efficiency engine. This includes the identification of key LSPI activity – engine parameter specification relations, minimally invasive high-speed endoscopic imaging and further LSPI key experiments. Only the accumulation of inorganic substances originating from lubricating oil additives enables specific deposits/particles to ignite the surrounding mixture over a multicyclic process due to the resulting increased oxidation reactivity. Through a final synthesis step of all results, a multi-cycle oxidation-reactivity-enhanced deposit/particle-driven LSPI root cause mechanism is established.




Diesel Engine Management


Book Description

This reference book provides a comprehensive insight into todays diesel injection systems and electronic control. It focusses on minimizing emissions and exhaust-gas treatment. Innovations by Bosch in the field of diesel-injection technology have made a significant contribution to the diesel boom. Calls for lower fuel consumption, reduced exhaust-gas emissions and quiet engines are making greater demands on the engine and fuel-injection systems.




Surfactants in Tribology, Volume 5


Book Description

Surfactants play a critical role in Tribology controlling friction, wear, and lubricant properties such as emulsification, demulsification, bioresistance, oxidation resistance, rust prevention and corrosion resistance. This is a critical topic for new materials and devices particularly those built at the nanoscale. This newest volume will address tribological properties of cutting fluids, lubricant performance related to steel surfaces, biolubricants, and novel materials and ways to reduce friction and wear. Scientists from industrial research and development (R&D) organizations and academic research teams in Asia, Europe, the Middle East and North America will participate in the work.