Battery Management Systems


Book Description

Battery Management Systems - Design by Modelling describes the design of Battery Management Systems (BMS) with the aid of simulation methods. The basic tasks of BMS are to ensure optimum use of the energy stored in the battery (pack) that powers a portable device and to prevent damage inflicted on the battery (pack). This becomes increasingly important due to the larger power consumption associated with added features to portable devices on the one hand and the demand for longer run times on the other hand. In addition to explaining the general principles of BMS tasks such as charging algorithms and State-of-Charge (SoC) indication methods, the book also covers real-life examples of BMS functionality of practical portable devices such as shavers and cellular phones. Simulations offer the advantage over measurements that less time is needed to gain knowledge of a battery's behaviour in interaction with other parts in a portable device under a wide variety of conditions. This knowledge can be used to improve the design of a BMS, even before a prototype of the portable device has been built. The battery is the central part of a BMS and good simulation models that can be used to improve the BMS design were previously unavailable. Therefore, a large part of the book is devoted to the construction of simulation models for rechargeable batteries. With the aid of several illustrations it is shown that design improvements can indeed be realized with the presented battery models. Examples include an improved charging algorithm that was elaborated in simulations and verified in practice and a new SoC indication system that was developed showing promising results. The contents of Battery Management Systems - Design by Modelling is based on years of research performed at the Philips Research Laboratories. The combination of basic and detailed descriptions of battery behaviour both in chemical and electrical terms makes this book truly multidisciplinary. It can therefore be read both by people with an (electro)chemical and an electrical engineering background.







Polymer Electrolyte Fuel Cell Durability


Book Description

This book covers a significant number of R&D projects, performed mostly after 2000, devoted to the understanding and prevention of performance degradation processes in polymer electrolyte fuel cells (PEFCs). The extent and severity of performance degradation processes in PEFCs were recognized rather gradually. Indeed, the recognition overlapped with a significant number of industrial dem- strations of fuel cell powered vehicles, which would suggest a degree of technology maturity beyond the resaolution of fundamental failure mechanisms. An intriguing question, therefore, is why has there been this apparent delay in addressing fun- mental performance stability requirements. The apparent answer is that testing of the power system under fully realistic operation conditions was one prerequisite for revealing the nature and extent of some key modes of PEFC stack failure. Such modes of failure were not exposed to a similar degree, or not at all, in earlier tests of PEFC stacks which were not performed under fully relevant conditions, parti- larly such tests which did not include multiple on–off and/or high power–low power cycles typical for transportation and mobile power applications of PEFCs. Long-term testing of PEFCs reported in the early 1990s by both Los Alamos National Laboratory and Ballard Power was performed under conditions of c- stant cell voltage, typically near the maximum power point of the PEFC.




Powering the U.S. Army of the Future


Book Description

At the request of the Deputy Assistant Secretary of the Army for Research and Technology, Powering the U.S. Army of the Future examines the U.S. Army's future power requirements for sustaining a multi-domain operational conflict and considers to what extent emerging power generation and transmission technologies can achieve the Army's operational power requirements in 2035. The study was based on one operational usage case identified by the Army as part of its ongoing efforts in multi-domain operations. The recommendations contained in this report are meant to help inform the Army's investment priorities in technologies to help ensure that the power requirements of the Army's future capability needs are achieved.




Electrochemical Energy Storage for Renewable Sources and Grid Balancing


Book Description

Electricity from renewable sources of energy is plagued by fluctuations (due to variations in wind strength or the intensity of insolation) resulting in a lack of stability if the energy supplied from such sources is used in 'real time'. An important solution to this problem is to store the energy electrochemically (in a secondary battery or in hydrogen and its derivatives) and to make use of it in a controlled fashion at some time after it has been initially gathered and stored. Electrochemical battery storage systems are the major technologies for decentralized storage systems and hydrogen is the only solution for long-term storage systems to provide energy during extended periods of low wind speeds or solar insolation. Future electricity grid design has to include storage systems as a major component for grid stability and for security of supply. The technology of systems designed to achieve this regulation of the supply of renewable energy, and a survey of the markets that they will serve, is the subject of this book. It includes economic aspects to guide the development of technology in the right direction. - Provides state-of-the-art information on all of the storage systems together with an assessment of competing technologies - Features detailed technical, economic and environmental impact information of different storage systems - Contains information about the challenges that must be faced for batteries and hydrogen-storage to be used in conjunction with a fluctuating (renewable energy) power supply




Lithium-ion Battery Materials and Engineering


Book Description

Gaining public attention due, in part, to their potential application as energy storage devices in cars, Lithium-ion batteries have encountered widespread demand, however, the understanding of lithium-ion technology has often lagged behind production. This book defines the most commonly encountered challenges from the perspective of a high-end lithium-ion manufacturer with two decades of experience with lithium-ion batteries and over six decades of experience with batteries of other chemistries. Authors with years of experience in the applied science and engineering of lithium-ion batteries gather to share their view on where lithium-ion technology stands now, what are the main challenges, and their possible solutions. The book contains real-life examples of how a subtle change in cell components can have a considerable effect on cell’s performance. Examples are supported with approachable basic science commentaries. Providing a unique combination of practical know-how with an in-depth perspective, this book will appeal to graduate students, young faculty members, or others interested in the current research and development trends in lithium-ion technology.




Lithium Metal Anodes and Rechargeable Lithium Metal Batteries


Book Description

This book provides comprehensive coverage of Lithium (Li) metal anodes for rechargeable batteries. Li is an ideal anode material for rechargeable batteries due to its extremely high theoretical specific capacity (3860 mAh g-1), low density (0.59 g cm-3), and the lowest negative electrochemical potential (−3.040 V vs. standard hydrogenelectrodes). Unfortunately, uncontrollable dendritic Li growth and limited Coulombic efficiency during Li deposition/stripping inherent in these batteries have prevented their practical applications over the past 40 years. With the emergence of post Liion batteries, safe and efficient operation of Li metal anodes has become an enabling technology which may determine the fate of several promising candidates for the next generation energy storage systems, including rechargeable Li-air batteries, Li-S batteries, and Li metal batteries which utilize intercalation compounds as cathodes. In this work, various factors that affect the morphology and Coulombic efficiency of Li anodes are analyzed. The authors also present the technologies utilized to characterize the morphology of Li deposition and the results obtained by modeling of Li dendrite growth. Finally, recent developments, especially the new approaches that enable safe and efficient operation of Li metal anodes at high current densities are reviewed. The urgent need and perspectives in this field are also discussed. The fundamental understanding and approaches presented in this work will be critical for the applicationof Li metal anodes. The general principles and approaches can also be used in other metal electrodes and general electrochemical deposition of metal films.




Lightning Protection of Aircraft


Book Description

This book is an attempt to present under one cover the current state of knowledge concerning the potential lightning effects on aircraft and that means that are available to designers and operators to protect against these effects. The impetus for writing this book springs from two sources- the increased use of nonmetallic materials in the structure of aircraft and the constant trend toward using electronic equipment to handle flight-critical control and navigation function.