Physics Teaching and Learning


Book Description

Physics Teaching and Learning: Challenging the Paradigm, RISE Volume 8, focuses on research contributions challenging the basic assumptions, ways of thinking, and practices commonly accepted in physics education. Teaching physics involves multifaceted, research-based, value added strategies designed to improve academic engagement and depth of learning. In this volume, researchers, teaching and curriculum reformers, and reform implementers discuss a range of important issues. The volume should be considered as a first step in thinking through what physics teaching and physics learning might address in teacher preparation programs, in-service professional development programs, and in classrooms. To facilitate thinking about research-based physics teaching and learning each chapter in the volume was organized around five common elements: 1. A significant review of research in the issue or problem area. 2. Themes addressed are relevant for the teaching and learning of K-16 science 3. Discussion of original research by the author(s) addressing the major theme of the chapter. 4. Bridge gaps between theory and practice and/or research and practice. 5. Concerns and needs are addressed of school/community context stakeholders including students, teachers, parents, administrators, and community members.




Subject Catalog


Book Description







Science Teachers' Learning


Book Description

Currently, many states are adopting the Next Generation Science Standards (NGSS) or are revising their own state standards in ways that reflect the NGSS. For students and schools, the implementation of any science standards rests with teachers. For those teachers, an evolving understanding about how best to teach science represents a significant transition in the way science is currently taught in most classrooms and it will require most science teachers to change how they teach. That change will require learning opportunities for teachers that reinforce and expand their knowledge of the major ideas and concepts in science, their familiarity with a range of instructional strategies, and the skills to implement those strategies in the classroom. Providing these kinds of learning opportunities in turn will require profound changes to current approaches to supporting teachers' learning across their careers, from their initial training to continuing professional development. A teacher's capability to improve students' scientific understanding is heavily influenced by the school and district in which they work, the community in which the school is located, and the larger professional communities to which they belong. Science Teachers' Learning provides guidance for schools and districts on how best to support teachers' learning and how to implement successful programs for professional development. This report makes actionable recommendations for science teachers' learning that take a broad view of what is known about science education, how and when teachers learn, and education policies that directly and indirectly shape what teachers are able to learn and teach. The challenge of developing the expertise teachers need to implement the NGSS presents an opportunity to rethink professional learning for science teachers. Science Teachers' Learning will be a valuable resource for classrooms, departments, schools, districts, and professional organizations as they move to new ways to teach science.







Concepts, Strategies and Models to Enhance Physics Teaching and Learning


Book Description

This book discusses novel research on and practices in the field of physics teaching and learning. It gathers selected high-quality studies that were presented at the GIREP-ICPE-EPEC 2017 conference, which was jointly organised by the International Research Group on Physics Teaching (GIREP); European Physical Society – Physics Education Division, and the Physics Education Commission of the International Union of Pure and Applied Physics (IUPAP). The respective chapters address a wide variety of topics and approaches, pursued in various contexts and settings, all of which represent valuable contributions to the field of physics education research. Examples include the design of curricula and strategies to develop student competencies—including knowledge, skills, attitudes and values; workshop approaches to teacher education; and pedagogical strategies used to engage and motivate students. This book shares essential insights into current research on physics education and will be of interest to physics teachers, teacher educators and physics education researchers around the world who are working to combine research and practice in physics teaching and learning.




Hearings


Book Description




Interactive Lecture Demonstrations


Book Description

Interactive Lecture Demonstrations (ILDs) are designed to enhance conceptual learning in physics lectures through active engagement of students in the learning process. Students observe real physics demonstrations, make predictions about the outcomes on a prediction sheet, and collaborate with fellow students by discussing their predictions in small groups. Students then examine the results of the live demonstration (often displayed as real-time graphs using computer data acquisition tools), compare these results with their predictions, and attempt to explain the observed phenomena. ILDs are available for all of the major topics in the introductory physics course and can be used within the traditional structure of an introductory physics course. All of the printed materials needed to implement them are included in this book.







STEM of Desire


Book Description

STEM of Desire: Queer Theories and Science Education locates, creates, and investigates intersections of science, technology, engineering, and mathematics (STEM) education and queer theorizing. Manifold desires—personal, political, cultural—produce and animate STEM education. Queer theories instigate and explore (im)possibilities for knowing and being through desires normal and strange. The provocative original manuscripts in this collection draw on queer theories and allied perspectives to trace entanglements of STEM education, sex, sexuality, gender, and desire and to advance constructive critique, creative world-making, and (com)passionate advocacy. Not just another call for inclusion, this volume turns to what and how STEM education and diverse, desiring subjects might be(come) in relation to each other and the world. STEM of Desire is the first book-length project on queering STEM education. Eighteen chapters and two poems by 27 contributors consider STEM education in schools and universities, museums and other informal learning environments, and everyday life. Subject areas include physical and life sciences, engineering, mathematics, nursing and medicine, environmental education, early childhood education, teacher education, and education standards. These queering orientations to theory, research, and practice will interest STEM teacher educators, teachers and professors, undergraduate and graduate students, scholars, policy makers, and academic libraries. Contributors are: Jesse Bazzul, Charlotte Boulay, Francis S. Broadway, Erin A. Cech, Steve Fifield, blake m. r. flessas, Andrew Gilbert, Helene Götschel, Emily M. Gray, Kristin L. Gunckel, Joe E. Heimlich, Tommye Hutson, Kathryn L. Kirchgasler, Michelle L. Knaier, Sheri Leafgren, Will Letts, Anna MacDermut, Michael J. Reiss, Donna M. Riley, Cecilia Rodéhn, Scott Sander, Nicholas Santavicca, James Sheldon, Amy E. Slaton, Stephen Witzig, Timothy D. Zimmerman, and Adrian Zongrone.