Wheel-Rail Interface Handbook


Book Description

Many of the engineering problems of particular importance to railways arise at interfaces and the safety-critical role of the wheel/rail interface is widely acknowledged. Better understanding of wheel/rail interfaces is therefore critical to improving the capacity, reliability and safety of the railway system. Wheel-rail interface handbook is a one-stop reference for railway engineering practitioners and academic researchers. Part one provides the fundamentals of contact mechanics, wear, fatigue and lubrication as well as state-of-the-art research and emerging technologies related to the wheel/rail interface and its management. Part two offers an overview of industrial practice from several different regions of the world, thereby providing an invaluable international perspective with practitioners’ experience of managing the wheel/rail interface in a variety of environments and circumstances. This comprehensive volume will enable practising railway engineers, in whatever discipline of railway engineering – infrastructure, vehicle design and safety, and so on – to enhance their understanding of wheel/rail issues, which have a major influence on the running of a reliable, efficient and safe railway. One-stop reference on the important topic of wheel rail-interfaces Presents the fundamentals of contact mechanics, wear, fatigue and lubrication Examines state-of-the-art research and emerging technologies related to wheel-rail interface and its management







Track Design Handbook for Light Rail Transit


Book Description

TCRP report 155 provides guidelines and descriptions for the design of various common types of light rail transit (LRT) track. The track structure types include ballasted track, direct fixation ("ballastless") track, and embedded track. The report considers the characteristics and interfaces of vehicle wheels and rail, tracks and wheel gauges, rail sections, alignments, speeds, and track moduli. The report includes chapters on vehicles, alignment, track structures, track components, special track work, aerial structures/bridges, corrosion control, noise and vibration, signals, traction power, and the integration of LRT track into urban streets.
















Railway Age


Book Description




Railway Noise and Vibration


Book Description

Railways are an environmentally friendly means of transport well suited to modern society. However, noise and vibration are key obstacles to further development of the railway networks for high-speed intercity traffic, for freight and for suburban metros and light-rail. All too often noise problems are dealt with inefficiently due to lack of understanding of the problem. This book brings together coverage of the theory of railway noise and vibration with practical applications of noise control technology at source to solve noise and vibration problems from railways. Each source of noise and vibration is described in a systematic way: rolling noise, curve squeal, bridge noise, aerodynamic noise, ground vibration and ground-borne noise, and vehicle interior noise. Theoretical modelling approaches are introduced for each source in a tutorial fashion Practical applications of noise control technology are presented using the theoretical models Extensive examples of application to noise reduction techniques are included Railway Noise and Vibration is a hard-working reference and will be invaluable to all who have to deal with noise and vibration from railways, whether working in the industry or in consultancy or academic research. David Thompson is Professor of Railway Noise and Vibration at the Institute of Sound and Vibration Research, University of Southampton. He has worked in the field of railway noise since 1980, with British Rail Research in Derby, UK, and TNO Institute of Applied Physics in the Netherlands before moving to Southampton in 1996. He was responsible for developing the TWINS software for predicting rolling noise. Discusses fully the theoretical background and practical workings of railway noise Includes the latest research findings, brought together in one place Forms an extended case study in the application of noise control techniques