Beyond the God Particle


Book Description

Two leading physicists discuss the importance of the Higgs Boson, the future of particle physics, and the mysteries of the universe yet to be unraveled. On July 4, 2012, the long-sought Higgs Boson--aka "the God Particle"--was discovered at the world's largest particle accelerator, the LHC, in Geneva, Switzerland. On March 14, 2013, physicists at CERN confirmed it. This elusive subatomic particle forms a field that permeates the entire universe, creating the masses of the elementary particles that are the basic building blocks of everything in the known world--from viruses to elephants, from atoms to quasars. Starting where Nobel Laureate Leon Lederman's bestseller The God Particle left off, this incisive new book explains what's next. Lederman and Hill discuss key questions that will occupy physicists for years to come:* Why were scientists convinced that something like the "God Particle" had to exist?* What new particles, forces, and laws of physics lie beyond the "God Particle"?* What powerful new accelerators are now needed for the US to recapture a leadership role in science and to reach "beyond the God Particle," such as Fermilab's planned Project-X and the Muon Collider? Using thoughtful, witty, everyday language, the authors show how all of these intriguing questions are leading scientists ever deeper into the fabric of nature. Readers of The God Particle will not want to miss this important sequel.




Beyond the God Particle


Book Description

Two leading physicists discuss the importance of the Higgs Boson, the future of particle physics, and the mysteries of the universe yet to be unraveled. On July 4, 2012, the long-sought Higgs Boson--aka "the God Particle"--was discovered at the world's largest particle accelerator, the LHC, in Geneva, Switzerland. On March 14, 2013, physicists at CERN confirmed it. This elusive subatomic particle forms a field that permeates the entire universe, creating the masses of the elementary particles that are the basic building blocks of everything in the known world--from viruses to elephants, from atoms to quasars. Starting where Nobel Laureate Leon Lederman's bestseller The God Particle left off, this incisive new book explains what's next. Lederman and Hill discuss key questions that will occupy physicists for years to come: * Why were scientists convinced that something like the "God Particle" had to exist? * What new particles, forces, and laws of physics lie beyond the "God Particle"? * What powerful new accelerators are now needed for the US to recapture a leadership role in science and to reach "beyond the God Particle," such as Fermilab's planned Project-X and the Muon Collider? Using thoughtful, witty, everyday language, the authors show how all of these intriguing questions are leading scientists ever deeper into the fabric of nature. Readers of The God Particle will not want to miss this important sequel.




Beyond the God Particle


Book Description

Two leading physicists discuss the importance of the Higgs Boson, the future of particle physics, and the mysteries of the universe yet to be unraveled. On July 4, 2012, the long-sought Higgs Boson--aka "the God Particle"--was discovered at the world's largest particle accelerator, the LHC, in Geneva, Switzerland. On March 14, 2013, physicists at CERN confirmed it. This elusive subatomic particle forms a field that permeates the entire universe, creating the masses of the elementary particles that are the basic building blocks of everything in the known world--from viruses to elephants, from atoms to quasars. Starting where Nobel Laureate Leon Lederman's bestseller The God Particle left off, this incisive new book explains what's next. Lederman and Hill discuss key questions that will occupy physicists for years to come:* Why were scientists convinced that something like the "God Particle" had to exist?* What new particles, forces, and laws of physics lie beyond the "God Particle"?* What powerful new accelerators are now needed for the US to recapture a leadership role in science and to reach "beyond the God Particle," such as Fermilab's planned Project-X and the Muon Collider? Using thoughtful, witty, everyday language, the authors show how all of these intriguing questions are leading scientists ever deeper into the fabric of nature. Readers of The God Particle will not want to miss this important sequel.




The God Particle


Book Description

A fascinating tour of particle physics from Nobel Prize winner Leon Lederman. At the root of particle physics is an invincible sense of curiosity. Leon Lederman embraces this spirit of inquiry as he moves from the Greeks' earliest scientific observations to Einstein and beyond to chart this unique arm of scientific study. His survey concludes with the Higgs boson, nicknamed the God Particle, which scientists hypothesize will help unlock the last secrets of the subatomic universe, quarks and all--it's the dogged pursuit of this almost mystical entity that inspires Lederman's witty and accessible history.




Higgs


Book Description

Relates the history of the search for the Higgs boson, also known as the "God" particle.




The Particle at the End of the Universe


Book Description

"The Higgs boson ... is the key to understanding why mass exists and how atoms are possible. After billions of dollars and decades of effort by more than six thousand researchers at the Large Hadron Collider in Switzerland--a doorway is opening into the mind-boggling world of dark matter and beyond. Caltech physicist and acclaimed writer Sean Carroll explains both the importance of the Higgs boson and the ultimately human story behind the greatest scientific achievement of our time"--Publisher




Symmetry and the Beautiful Universe


Book Description

When scientists peer through a telescope at the distant stars in outer space or use a particle-accelerator to analyze the smallest components of matter, they discover that the same laws of physics govern the whole universe at all times and all places. Physicists call the eternal, ubiquitous constancy of the laws of physics symmetry. Symmetry is the basic underlying principle that defines the laws of nature and hence controls the universe. This all-important insight is one of the great conceptual breakthroughs in modern physics and is the basis of contemporary efforts to discover a grand unified theory to explain all the laws of physics. Nobel Laureate Leon M. Lederman and physicist Christopher T. Hill explain the supremely elegant concept of symmetry and all its profound ramifications to life on Earth and the universe at large in this eloquent, accessible popular science book. They not only clearly describe concepts normally reserved only for physicists and mathematicians, but they also instill an appreciation for the profound beauty of the universe’s inherent design. Central to the story of symmetry is an obscure, unpretentious, but extremely gifted German mathematician named Emmy Noether. Though still little known to the world, she impressed no less a scientist than Albert Einstein, who praised her "penetrating mathematical thinking." In some of her earliest work she proved that the law of the conservation of energy was connected to the idea of symmetry and thus laid the mathematical groundwork for what may be the most important concept of modern physics. Lederman and Hill reveal concepts about the universe, based on Noether’s work, that are largely unknown to the public and have wide-reaching implications in connection with the Big Bang, Einstein’s theory of relativity, quantum mechanics, and many other areas of physics. Through ingenious analogies and illustrations, they bring these astounding notions to life. This book will open your eyes to a universe you never knew existed.




Massive


Book Description

The biggest science story of our time, Massive spans four decades weaving together the personal stories and intense rivalry behind the search for the 'God' particle or Higgs boson - the particle that gives mass (or weight) to all things.




Massive


Book Description

A prize-winning science writer provides a history of the 40-year search for the Higgs boson, also known as the "God" particle, and the intense rivalries, clashing egos and grand ambition that led to a world-changing discovery.




Quantum Physics for Poets


Book Description

Quantum theory is the bedrock of contemporary physics and the basis of understanding matter in its tiniest dimensions and the vast universe as a whole. But for many, the theory remains an impenetrable enigma. Now, two physicists seek to remedy this situation by both drawing on their scientific expertise and their talent for communicating science to the general reader. In this lucid, informative book, designed for the curious, Lederman and Hill make the seemingly daunting subject of quantum physics accessible, appealing, and exciting. Their story is partly historical, covering the many "Eureka" moments when great scientists-Max Planck, Albert Einstein, Niels Bohr, Werner Heisenberg, Erwin Schrödinger, and others-struggled to come to grips with the bizarre realities that quantum research revealed. Although their findings were indisputably proven in experiments, they were so strange and counterintuitive that Einstein refused to accept quantum theory, despite its great success. The authors explain the many strange and even eerie aspects of quantum reality at the subatomic level, from "particles" that can be many places simultaneously and sometimes act more like waves, to the effect that a human can have on their movements by just observing them! Finally, the authors delve into quantum physics' latest and perhaps most breathtaking offshoots-field theory and string theory. The intricacies and ramifications of these two theories will give the reader much to ponder. In addition, the authors describe the diverse applications of quantum theory in its almost countless forms of modern technology throughout the world. Using eloquent analogies and illustrative examples, Quantum Physics for Poets renders even the most profound reaches of quantum theory understandable and something for us all to savor.