Beyond Topology


Book Description

The purpose of this collection is to guide the non-specialist through the basic theory of various generalizations of topology, starting with clear motivations for their introduction. Structures considered include closure spaces, convergence spaces, proximity spaces, quasi-uniform spaces, merotopic spaces, nearness and filter spaces, semi-uniform convergence spaces, and approach spaces. Each chapter is self-contained and accessible to the graduate student, and focuses on motivations to introduce the generalization of topologies considered, presenting examples where desirable properties are not present in the realm of topologies and the problem is remedied in the more general context. Then, enough material will be covered to prepare the reader for more advanced papers on the topic. While category theory is not the focus of the book, it is a convenient language to study these structures and, while kept as a tool rather than an object of study, will be used throughout the book. For this reason, the book contains an introductory chapter on categorical topology.




Geometry and Topology of Manifolds: Surfaces and Beyond


Book Description

This book represents a novel approach to differential topology. Its main focus is to give a comprehensive introduction to the classification of manifolds, with special attention paid to the case of surfaces, for which the book provides a complete classification from many points of view: topological, smooth, constant curvature, complex, and conformal. Each chapter briefly revisits basic results usually known to graduate students from an alternative perspective, focusing on surfaces. We provide full proofs of some remarkable results that sometimes are missed in basic courses (e.g., the construction of triangulations on surfaces, the classification of surfaces, the Gauss-Bonnet theorem, the degree-genus formula for complex plane curves, the existence of constant curvature metrics on conformal surfaces), and we give hints to questions about higher dimensional manifolds. Many examples and remarks are scattered through the book. Each chapter ends with an exhaustive collection of problems and a list of topics for further study. The book is primarily addressed to graduate students who did take standard introductory courses on algebraic topology, differential and Riemannian geometry, or algebraic geometry, but have not seen their deep interconnections, which permeate a modern approach to geometry and topology of manifolds.




Advances in Quantum Chemical Topology Beyond QTAIM


Book Description

Advances in Quantum Chemical Topology Beyond QTAIM provides a complete overview of the field, starting with traditional methods and then covering key steps to the latest state-of-the-art extensions of QTAIM. The book supports researchers by compiling and reviewing key methods, comparing different algorithms, and providing computational results to show the efficacy of the approaches. Beginning with an introduction to quantum chemistry, QTAIM and key extensions, the book goes on to discuss interacting quantum atoms and related energy properties, explores partitioning methods, and compares algorithms for QTAIM. Partitioning schemes are them compared in more detail before applications are explored and future developments discussed. Drawing together the knowledge of key authorities in the area, this book provides a comprehensive, pedogeological guide to this insightful theory for all those interested in modelling, exploring and understanding molecular properties. - Provides a contemporary review of the extensions and application of QTAIM methods - Compiles all extensions of QTAIM in one place for easy reference - Includes a chapter with an Introduction to Quantum Chemistry - Presents complex information at a level accessible to those engaged in theoretical/computational chemistry




Topologies of Power


Book Description

Topologies of Power amounts to a radical departure in the way that power and space have been understood. It calls into question the very idea that power is simply extended across a given territory or network, and argues that power today has a new found ‘reach’. Topological shifts have subtly altered the reach of power, enabling governments, corporations and NGOs alike to register their presence through quieter, less brash forms of power than domination or overt control. In a world in which proximity and distance increasingly play across one another, topology offers an insight into how power remains continuous under transformation: the same but different in its ability to shape peoples’ lives. Drawing upon a range of political, economic and cultural illustrations, the book sets out a clear and accessible account of the topological workings of power in the contemporary moment. It will be invaluable for both students and academics in human geography, politics, sociology, and cultural studies.




Topology Through Inquiry


Book Description

Topology Through Inquiry is a comprehensive introduction to point-set, algebraic, and geometric topology, designed to support inquiry-based learning (IBL) courses for upper-division undergraduate or beginning graduate students. The book presents an enormous amount of topology, allowing an instructor to choose which topics to treat. The point-set material contains many interesting topics well beyond the basic core, including continua and metrizability. Geometric and algebraic topology topics include the classification of 2-manifolds, the fundamental group, covering spaces, and homology (simplicial and singular). A unique feature of the introduction to homology is to convey a clear geometric motivation by starting with mod 2 coefficients. The authors are acknowledged masters of IBL-style teaching. This book gives students joy-filled, manageable challenges that incrementally develop their knowledge and skills. The exposition includes insightful framing of fruitful points of view as well as advice on effective thinking and learning. The text presumes only a modest level of mathematical maturity to begin, but students who work their way through this text will grow from mathematics students into mathematicians. Michael Starbird is a University of Texas Distinguished Teaching Professor of Mathematics. Among his works are two other co-authored books in the Mathematical Association of America's (MAA) Textbook series. Francis Su is the Benediktsson-Karwa Professor of Mathematics at Harvey Mudd College and a past president of the MAA. Both authors are award-winning teachers, including each having received the MAA's Haimo Award for distinguished teaching. Starbird and Su are, jointly and individually, on lifelong missions to make learning—of mathematics and beyond—joyful, effective, and available to everyone. This book invites topology students and teachers to join in the adventure.




Beyond Spacetime


Book Description

One of the greatest challenges in fundamental physics is to reconcile quantum mechanics and general relativity in a theory of quantum gravity. A successful theory would have profound consequences for our understanding of space, time, and matter. This collection of essays written by eminent physicists and philosophers discusses these consequences and examines the most important conceptual questions among philosophers and physicists in their search for a quantum theory of gravity. Comprising three parts, the book explores the emergence of classical spacetime, the nature of time, and important questions of the interpretation, metaphysics, and epistemology of quantum gravity. These essays will appeal to both physicists and philosophers of science working on problems in foundational physics, specifically that of quantum gravity.




Analysis And Beyond: An Introduction With Examples And Exercises


Book Description

This volume aims to bridge between elementary textbooks on calculus and established books on advanced analysis. It provides elucidation of the reversible process of differentiation and integration through two featured principles: the chain rule and its inverse — the change of variable — as well as the Leibniz rule and its inverse — the integration by parts. The chain rule or differentiation of composite functions is ubiquitous since almost all (a.a.) functions are composite functions of (elementary) functions and with the change of variable method as its reverse process. The Leibniz rule or differentiation of the product of two functions is essential since it makes differentiation nonlinear and with the method of integration by parts as its reverse process.Readers will find numerous worked-out examples and exercises in this volume. Detailed solutions are provided for most of the common exercises so that readers remain enthusiastically motivated in solving and understanding the concepts better.The intention of this volume is to lead the reader into the rich fields of advanced analysis and to obtain a much better view of useful mathematics.




Photons In Fock Space And Beyond (In 3 Volumes)


Book Description

The three-volume major reference “Photons in Fock Space and Beyond” undertakes a new mathematical and conceptual foundation of the theory of light emphasizing mesoscopic radiation systems. The quantum optical notions are generalized beyond Fock representations where the richness of an infinite dimensional quantum field system, with its mathematical difficulties and theoretical possibilities, is fully taken into account. It aims at a microscopic formulation of a mesoscopic model class which covers in principle all stages of the generation and propagation of light within a unified and well-defined conceptual frame.The dynamics of the interacting systems is founded — according to original works of the authors — on convergent perturbation series and describes the developments of the quantized microscopic as well as the classical collective degrees of freedom at the same time. The achieved theoretical unification fits especially to laser and microwave applications inheriting objective information over quantum noise.A special advancement is the incorporation of arbitrary multiply connected cavities where ideal conductor boundary conditions are imposed. From there arises a new category of classical and quantized field parts, apparently not treated in Quantum Electrodynamics before. In combination with gauge theory, the additional “cohomological fields” explain topological quantum effects in superconductivity. Further applications are to be expected for optoelectronic and optomechanical systems.




Convex Analysis and Beyond


Book Description

This book presents a unified theory of convex functions, sets, and set-valued mappings in topological vector spaces with its specifications to locally convex, Banach and finite-dimensional settings. These developments and expositions are based on the powerful geometric approach of variational analysis, which resides on set extremality with its characterizations and specifications in the presence of convexity. Using this approach, the text consolidates the device of fundamental facts of generalized differential calculus to obtain novel results for convex sets, functions, and set-valued mappings in finite and infinite dimensions. It also explores topics beyond convexity using the fundamental machinery of convex analysis to develop nonconvex generalized differentiation and its applications. The text utilizes an adaptable framework designed with researchers as well as multiple levels of students in mind. It includes many exercises and figures suited to graduate classes in mathematical sciences that are also accessible to advanced students in economics, engineering, and other applications. In addition, it includes chapters on convex analysis and optimization in finite-dimensional spaces that will be useful to upper undergraduate students, whereas the work as a whole provides an ample resource to mathematicians and applied scientists, particularly experts in convex and variational analysis, optimization, and their applications.




Beyond The Triangle: Brownian Motion, Ito Calculus, And Fokker-planck Equation - Fractional Generalizations


Book Description

The book is devoted to the fundamental relationship between three objects: a stochastic process, stochastic differential equations driven by that process and their associated Fokker-Planck-Kolmogorov equations. This book discusses wide fractional generalizations of this fundamental triple relationship, where the driving process represents a time-changed stochastic process; the Fokker-Planck-Kolmogorov equation involves time-fractional order derivatives and spatial pseudo-differential operators; and the associated stochastic differential equation describes the stochastic behavior of the solution process. It contains recent results obtained in this direction.This book is important since the latest developments in the field, including the role of driving processes and their scaling limits, the forms of corresponding stochastic differential equations, and associated FPK equations, are systematically presented. Examples and important applications to various scientific, engineering, and economics problems make the book attractive for all interested researchers, educators, and graduate students.




Recent Books