Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications


Book Description

Data processing has become essential to modern civilization. The original data for this processing comes from measurements or from experts, and both sources are subject to uncertainty. Traditionally, probabilistic methods have been used to process uncertainty. However, in many practical situations, we do not know the corresponding probabilities: in measurements, we often only know the upper bound on the measurement errors; this is known as interval uncertainty. In turn, expert estimates often include imprecise (fuzzy) words from natural language such as "small"; this is known as fuzzy uncertainty. In this book, leading specialists on interval, fuzzy, probabilistic uncertainty and their combination describe state-of-the-art developments in their research areas. Accordingly, the book offers a valuable guide for researchers and practitioners interested in data processing under uncertainty, and an introduction to the latest trends and techniques in this area, suitable for graduate students.




Beyond Traditional Probabilistic Methods in Economics


Book Description

This book presents recent research on probabilistic methods in economics, from machine learning to statistical analysis. Economics is a very important – and at the same a very difficult discipline. It is not easy to predict how an economy will evolve or to identify the measures needed to make an economy prosper. One of the main reasons for this is the high level of uncertainty: different difficult-to-predict events can influence the future economic behavior. To make good predictions and reasonable recommendations, this uncertainty has to be taken into account. In the past, most related research results were based on using traditional techniques from probability and statistics, such as p-value-based hypothesis testing. These techniques led to numerous successful applications, but in the last decades, several examples have emerged showing that these techniques often lead to unreliable and inaccurate predictions. It is therefore necessary to come up with new techniques for processing the corresponding uncertainty that go beyond the traditional probabilistic techniques. This book focuses on such techniques, their economic applications and the remaining challenges, presenting both related theoretical developments and their practical applications.




Interval Methods for Solving Nonlinear Constraint Satisfaction, Optimization and Similar Problems


Book Description

This book highlights recent research on interval methods for solving nonlinear constraint satisfaction, optimization and similar problems. Further, it presents a comprehensive survey of applications in various branches of robotics, artificial intelligence systems, economics, control theory, dynamical systems theory, and others. Three appendices, on the notation, representation of numbers used as intervals’ endpoints, and sample implementations of the interval data type in several programming languages, round out the coverage.




Soft Computing for Security Applications


Book Description

This book features selected papers from the International Conference on Soft Computing for Security Applications (ICSCS 2023), held at Dhirajlal Gandhi College of Technology, Tamil Nadu, India, during April 21–22, 2023. It covers recent advances in the field of soft computing techniques such as fuzzy logic, neural network, support vector machines, evolutionary computation, machine learning, and probabilistic reasoning to solve various real-time challenges. The book presents innovative work by leading academics, researchers, and experts from industry.







Optimization and Learning


Book Description

This volume constitutes the refereed proceedings of the 4th International Conference on Optimization and Learning, OLA 2021, held in Catania, Italy, in June 2021. Due to the COVID-19 pandemic the conference was held online. The 27 full papers were carefully reviewed and selected from 62 submissions. The papers presented in the volume are organized in topical sections on ​synergies between optimization and learning; learning for optimization; machine learning and deep learning; transportation and logistics; optimization; applications of learning and optimization methods.




Mobile Computing and Sustainable Informatics


Book Description

This book gathers selected high-quality research papers presented at International Conference on Mobile Computing and Sustainable Informatics (ICMCSI 2022) organized by Pulchowk Campus, Institute of Engineering, Tribhuvan University, Nepal, during 27–28 January 2022. The book discusses recent developments in mobile communication technologies ranging from mobile edge computing devices, to personalized, embedded and sustainable applications. The book covers vital topics like mobile networks, computing models, algorithms, sustainable models and advanced informatics that supports the symbiosis of mobile computing and sustainable informatics.




Data Analysis and Optimization


Book Description

This book presents the state-of-the-art in the emerging field of data science and includes models for layered security with applications in the protection of sites—such as large gathering places—through high-stake decision-making tasks. Such tasks include cancer diagnostics, self-driving cars, and others where wrong decisions can possibly have catastrophic consequences. Additionally, this book provides readers with automated methods to analyze patterns and models for various types of data, with applications ranging from scientific discovery to business intelligence and analytics. The book primarily includes exploratory data analysis, pattern mining, clustering, and classification supported by real life case studies. The statistical section of this book explores the impact of data mining and modeling on the predictability assessment of time series. Further new notions of mean values based on ideas of multi-criteria optimization are compared with their conventional definitions, leading to new algorithmic approaches to the calculation of the suggested new means. The style of the written chapters and the provision of a broad yet in-depth overview of data mining, integrating novel concepts from machine learning and statistics, make the book accessible to upper level undergraduate and graduate students in data mining courses. Students and professionals specializing in computer and management science, data mining for high-dimensional data, complex graphs and networks will benefit from the cutting-edge ideas and practically motivated case studies in this book.




Intelligent and Fuzzy Systems


Book Description

This book presents recent research in intelligent and fuzzy techniques on digital transformation and the new normal, the state to which economies, societies, etc. settle following a crisis bringing us to a new environment. Digital transformation and the new normal-appearing in many areas such as digital economy, digital finance, digital government, digital health, and digital education are the main scope of this book. The readers can benefit from this book for preparing for a digital “new normal” and maintaining a leadership position among competitors in both manufacturing and service companies. Digitizing an industrial company is a challenging process, which involves rethinking established structures, processes, and steering mechanisms presented in this book. The intended readers are intelligent and fuzzy systems researchers, lecturers, M.Sc., and Ph.D. students studying digital transformation and new normal. The book covers fuzzy logic theory and applications, heuristics, and metaheuristics from optimization to machine learning, from quality management to risk management, making the book an excellent source for researchers.




Modeling and Simulating Complex Business Perceptions


Book Description

Fuzzy cognitive maps (FCMs) have gained popularity in the scientific community due to their capabilities in modeling and decision making for complex problems.This book presents a novel algorithm called glassoFCM to enable automatic learning of FCM models from data. Specifically, glassoFCM is a combination of two methods, glasso (a technique originated from machine learning) for data modeling and FCM simulation for decision making. The book outlines that glassoFCM elaborates simple, accurate, and more stable models that are easy to interpret and offer meaningful decisions. The research results presented are based on an investigation related to a real-world business intelligence problem to evaluate characteristics that influence employee work readiness.Finally, this book provides readers with a step-by-step guide of the 'fcm' package to execute and visualize their policies and decisions through the FCM simulation process.