Bifurcation and Chaos in Nonsmooth Mechanical Systems


Book Description

This book presents the theoretical frame for studying lumped nonsmoothdynamical systems: the mathematical methods are recalled, and adaptednumerical methods are introduced (differential inclusions, maximalmonotone operators, Filippov theory, Aizerman theory, etc.




Bifurcation and Chaos in Nonsmooth Mechanical Systems


Book Description

This book presents the theoretical frame for studying lumped nonsmooth dynamical systems: the mathematical methods are recalled, and adapted numerical methods are introduced (differential inclusions, maximal monotone operators, Filippov theory, Aizerman theory, etc.). Tools available for the analysis of classical smooth nonlinear dynamics (stability analysis, the Melnikov method, bifurcation scenarios, numerical integrators, solvers, etc.) are extended to the nonsmooth frame. Many models and applications arising from mechanical engineering, electrical circuits, material behavior and civil engineering are investigated to illustrate theoretical and computational developments.




Bifurcation And Chaos In Nonsmooth Mechanical Systems


Book Description

This book presents the theoretical frame for studying lumped nonsmooth dynamical systems: the mathematical methods are recalled, and adapted numerical methods are introduced (differential inclusions, maximal monotone operators, Filippov theory, Aizerman theory, etc.). Tools available for the analysis of classical smooth nonlinear dynamics (stability analysis, the Melnikov method, bifurcation scenarios, numerical integrators, solvers, etc.) are extended to the nonsmooth frame. Many models and applications arising from mechanical engineering, electrical circuits, material behavior and civil engineering are investigated to illustrate theoretical and computational developments.




Dynamics and Bifurcations of Non-Smooth Mechanical Systems


Book Description

This monograph combines the knowledge of both the field of nonlinear dynamics and non-smooth mechanics, presenting a framework for a class of non-smooth mechanical systems using techniques from both fields. The book reviews recent developments, and opens the field to the nonlinear dynamics community. This book addresses researchers and graduate students in engineering and mathematics interested in the modelling, simulation and dynamics of non-smooth systems and nonlinear dynamics.




Synchronization Of Mechanical Systems


Book Description

The main goal of this book is to prove analytically and validate experimentally that synchronization in multi-composed mechanical systems can be achieved in the case of partial knowledge of the state vector of the systems, i.e. when only positions are measured. For this purpose, synchronization schemes based on interconnections between the systems, feedback controllers and observers are proposed.Because mechanical systems include a large variety of systems, and since it is impossible to address all of them, the book focuses on robot manipulators. Nonetheless the ideas developed here can be extended to other mechanical systems, such as mobile robots, motors and generators.




Chaos, Bifurcations And Fractals Around Us: A Brief Introduction


Book Description

During the last twenty years, a large number of books on nonlinear chaotic dynamics in deterministic dynamical systems have appeared. These academic tomes are intended for graduate students and require a deep knowledge of comprehensive, advanced mathematics. There is a need for a book that is accessible to general readers, a book that makes it possible to get a good deal of knowledge about complex chaotic phenomena in nonlinear oscillators without deep mathematical study.Chaos, Bifurcations and Fractals Around Us: A Brief Introduction fills that gap. It is a very short monograph that, owing to geometric interpretation complete with computer color graphics, makes it easy to understand even very complex advanced concepts of chaotic dynamics. This invaluable publication is also addressed to lecturers in engineering departments who want to include selected nonlinear problems in full time courses on general mechanics, vibrations or physics so as to encourage their students to conduct further study.




Nonlinear And Parametric Phenomena: Theory And Applications In Radiophysical And Mechanical Systems


Book Description

The book comprises a broad panorama of phenomena occurring in four major classes of radiophysical and mechanical systems — linear, nonlinear, parametric, and nonlinear-parametric. An analytical technique for the broad circle of issues under consideration is developed. It is presented in a user-friendly form, allowing its further direct application in research practices.Analytical methods are presented for investigating modulation-parametric and nonlinear systems, oscillating systems with periodic and almost periodic time-dependent parameters, effects of adaptive self-organization in coupled resonance systems and oscillating systems under the action of external forces, nonlinear with respect to the coordinates of excited systems.Of an interdisciplinary nature, this volume can serve as a handbook for developing lecture courses such as Fundamentals of Nonlinear Dynamics and Theory of Nonlinear Oscillations, Theory of Nonlinear Circuits and Systems, Fundamentals of Radiophysics and Electronics, Theory of Signals and Theoretical Radiophysics, Theoretical Mechanics and Electrodynamics.




Ordinary Differential Equations and Mechanical Systems


Book Description

This book applies a step-by-step treatment of the current state-of-the-art of ordinary differential equations used in modeling of engineering systems/processes and beyond. It covers systematically ordered problems, beginning with first and second order ODEs, linear and higher-order ODEs of polynomial form, theory and criteria of similarity, modeling approaches, phase plane and phase space concepts, stability optimization and ending on chaos and synchronization. Presenting both an overview of the theory of the introductory differential equations in the context of applicability and a systematic treatment of modeling of numerous engineering and physical problems through linear and non-linear ODEs, the volume is self-contained, yet serves both scientific and engineering interests. The presentation relies on a general treatment, analytical and numerical methods, concrete examples and engineering intuition. The scientific background used is well balanced between elementary and advanced level, making it as a unique self-contained source for both theoretically and application oriented graduate and doctoral students, university teachers, researchers and engineers of mechanical, civil and mechatronic engineering.




A Gallery of Chua Attractors


Book Description

Chaos is considered as one of the most important concepts in modern science. It originally appeared only in computer simulation (the famous Lorenz equation of 1963), but this changed with the introduction of Chua's oscillator (1986) — a simple electronic circuit with the ability to generate a vast range of chaotic behaviors. With Chua's circuit, chaos became a physical phenomenon, readily understood and represented in mathematical language. Yet, even so, it is still difficult for the non-specialist to appreciate the full variety of behaviors that the system can produce.This book aims to bridge the gap. A gallery of nearly 900 “chaotic attractors” — some generated by Chua's physical circuit, the majority through computer simulation of the circuit and its generalizations — are illustrated as 3D color images, time series and fast Fourier transform algorithms. For interested researchers, also presented is the information necessary to replicate the behaviors and images. Finally, how the fractal richness can be plied to artistic ends in generating music and interesting sounds is shown; some examples are included in the DVD-ROM which comes with the book.The contents have also appeared in the International Journal of Bifurcation and Chaos (2007).




Numerical Simulation Of Waves And Fronts In Inhomogeneous Solids


Book Description

This book shows the advanced methods of numerical simulation of waves and fronts propagation in inhomogeneous solids and introduces related important ideas associated with the application of numerical methods for these problems. Great care has been taken throughout the book to seek a balance between the thermomechanical analysis and numerical techniques. It is suitable for advanced undergraduate and graduate courses in continuum mechanics and engineering. Necessary prerequisites for this text are basic continuum mechanics and thermodynamics. Some elementary knowledge of numerical methods for partial differential equations is also preferable.