Bifurcation Control


Book Description

Bifurcation control refers to the task of designing a controller that can modify the bifurcation properties of a given nonlinear system, so as to achieve some desirable dynamical behaviors. There exists no similar control theory-oriented book available in the market that is devoted to the subject of bifurcation control, written by control engineers for control engineers. World-renowned leading experts in the field provide their state-of-the-art survey about the extensive research that has been done over the last few years in this subject. The book is not only aimed at active researchers in the field of bifurcation control and its applications, but also at a general audience in related fields.




CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Volume XIII


Book Description

This Encyclopedia of Control Systems, Robotics, and Automation is a component of the global Encyclopedia of Life Support Systems EOLSS, which is an integrated compendium of twenty one Encyclopedias. This 22-volume set contains 240 chapters, each of size 5000-30000 words, with perspectives, applications and extensive illustrations. It is the only publication of its kind carrying state-of-the-art knowledge in the fields of Control Systems, Robotics, and Automation and is aimed, by virtue of the several applications, at the following five major target audiences: University and College Students, Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers and NGOs.




Nonlinear Control Systems Design 1992


Book Description

This volume represents most aspects of the rich and growing field of nonlinear control. These proceedings contain 78 papers, including six plenary lectures, striking a balance between theory and applications. Subjects covered include feedback stabilization, nonlinear and adaptive control of electromechanical systems, nonholonomic systems. Generalized state space systems, algebraic computing in nonlinear systems theory, decoupling, linearization and model-matching and robust control are also covered.




Air Breathing Engines and Aerospace Propulsion


Book Description

Contributed papers presented at the 7th National Conference on Air Breathing Engines and Aerospace Propulsion, hosted at I.I.T., Kanpur.




Real-Time Optimization by Extremum-Seeking Control


Book Description

An up-close look at the theory behind and application of extremum seeking Originally developed as a method of adaptive control for hard-to-model systems, extremum seeking solves some of the same problems as today's neural network techniques, but in a more rigorous and practical way. Following the resurgence in popularity of extremum-seeking control in aerospace and automotive engineering, Real-Time Optimization by Extremum-Seeking Control presents the theoretical foundations and selected applications of this method of real-time optimization. Written by authorities in the field and pioneers in adaptive nonlinear control systems, this book presents both significant theoretic value and important practical potential. Filled with in-depth insight and expert advice, Real-Time Optimization by Extremum-Seeking Control: * Develops optimization theory from the points of dynamic feedback and adaptation * Builds a solid bridge between the classical optimization theory and modern feedback and adaptation techniques * Provides a collection of useful tools for problems in this complex area * Presents numerous applications of this powerful methodology * Demonstrates the immense potential of this methodology for future theory development and applications Real-Time Optimization by Extremum-Seeking Control is an important resource for both students and professionals in all areas of engineering-electrical, mechanical, aerospace, chemical, biomedical-and is also a valuable reference for practicing control engineers.




Compressor Surge and Rotating Stall


Book Description

The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology impacts all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies . . . , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Operating plant as close as possible to constraint boundaries so often brings economic benefits in industrial process control. This is the conundrum at the heart of this monograph by Tommy Gravdahl and Olav Egeland on stall control for compressors. Operation of the compressor closer to the surge line can increase operational efficiency and flexibility The approach taken by the authors follows the modern control system paradigm: -physical understanding, detailed modelling and simulation studies and finally control studies. The thoroughness of the presentation, bibliography and appendices indicates that the volume has all the hallmarks of being a classic for its subject. Despite the monograph's narrow technical content, the techniques and insights presented should appeal to the wider industrial control community as well as the gas turbine/compressor specialist. M. J. Grimble and M. A.




Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles


Book Description

Dynamical system theory has developed rapidly over the past fifty years. It is a subject upon which the theory of limit cycles has a significant impact for both theoretical advances and practical solutions to problems. Hopf bifurcation from a center or a focus is integral to the theory of bifurcation of limit cycles, for which normal form theory is a central tool. Although Hopf bifurcation has been studied for more than half a century, and normal form theory for over 100 years, efficient computation in this area is still a challenge with implications for Hilbert’s 16th problem. This book introduces the most recent developments in this field and provides major advances in fundamental theory of limit cycles. Split into two parts, the first focuses on the study of limit cycles bifurcating from Hopf singularity using normal form theory with later application to Hilbert’s 16th problem, while the second considers near Hamiltonian systems using Melnikov function as the main mathematical tool. Classic topics with new results are presented in a clear and concise manner and are accompanied by the liberal use of illustrations throughout. Containing a wealth of examples and structured algorithms that are treated in detail, a good balance between theoretical and applied topics is demonstrated. By including complete Maple programs within the text, this book also enables the reader to reconstruct the majority of formulas provided, facilitating the use of concrete models for study. Through the adoption of an elementary and practical approach, this book will be of use to graduate mathematics students wishing to study the theory of limit cycles as well as scientists, across a number of disciplines, with an interest in the applications of periodic behavior.




Stability of Dynamical Systems


Book Description

The main purpose of developing stability theory is to examine dynamic responses of a system to disturbances as the time approaches infinity. It has been and still is the object of intense investigations due to its intrinsic interest and its relevance to all practical systems in engineering, finance, natural science and social science. This monograph provides some state-of-the-art expositions of major advances in fundamental stability theories and methods for dynamic systems of ODE and DDE types and in limit cycle, normal form and Hopf bifurcation control of nonlinear dynamic systems. - Presents comprehensive theory and methodology of stability analysis - Can be used as textbook for graduate students in applied mathematics, mechanics, control theory, theoretical physics, mathematical biology, information theory, scientific computation - Serves as a comprehensive handbook of stability theory for practicing aerospace, control, mechanical, structural, naval and civil engineers