Dynamics and Bifurcations


Book Description

In recent years, due primarily to the proliferation of computers, dynamical systems has again returned to its roots in applications. It is the aim of this book to provide undergraduate and beginning graduate students in mathematics or science and engineering with a modest foundation of knowledge. Equations in dimensions one and two constitute the majority of the text, and in particular it is demonstrated that the basic notion of stability and bifurcations of vector fields are easily explained for scalar autonomous equations. Further, the authors investigate the dynamics of planar autonomous equations where new dynamical behavior, such as periodic and homoclinic orbits appears.




The Symmetry Perspective


Book Description

The framework of ‘symmetry’ provides an important route between the abstract theory and experimental observations. The book applies symmetry methods to dynamical systems, focusing on bifurcation and chaos theory. Its exposition is organized around a wide variety of relevant applications. From the reviews: "[The] rich collection of examples makes the book...extremely useful for motivation and for spreading the ideas to a large Community."--MATHEMATICAL REVIEWS




Dynamics and Bifurcation in Networks


Book Description

In recent years, there has been an explosion of interest in network-based modeling in many branches of science. This book synthesizes some of the common features of many such models, providing a general framework analogous to the modern theory of nonlinear dynamical systems. How networks lead to behavior not typical in a general dynamical system and how the architecture and symmetry of the network influence this behavior are the book’s main themes. Dynamics and Bifurcation in Networks: Theory and Applications of Coupled Differential Equations is the first book to describe the formalism for network dynamics developed over the past 20 years. In it, the authors introduce a definition of a network and the associated class of “admissible” ordinary differential equations, in terms of a directed graph whose nodes represent component dynamical systems and whose arrows represent couplings between these systems. They also develop connections between network architecture and the typical dynamics and bifurcations of these equations and discuss applications of this formalism to various areas of science, including gene regulatory networks, animal locomotion, decision-making, homeostasis, binocular rivalry, and visual illusions. This book will be of interest to scientific researchers in any area that uses network models, which includes many parts of biology, physics, chemistry, computer science, electrical and electronic engineering, psychology, and sociology.




Synchronization in Complex Networks of Nonlinear Dynamical Systems


Book Description

This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ideas from systems theory, linear algebra and graph theory and the synergy between them that are necessary to derive synchronization conditions. Many of the results, which have been obtained fairly recently and have until now not appeared in textbook form, are presented with complete proofs. This text is suitable for graduate-level study or for researchers who would like to be better acquainted with the latest research in this area. Sample Chapter(s). Chapter 1: Introduction (76 KB). Contents: Graphs, Networks, Laplacian Matrices and Algebraic Connectivity; Graph Models; Synchronization in Networks of Nonlinear Continuous-Time Dynamical Systems; Synchronization in Networks of Coupled Discrete-Time Systems; Synchronization in Network of Systems with Linear Dynamics; Agreement and Consensus Problems in Groups of Interacting Agents. Readership: Graduate students and researchers in physics, applied mathematics and engineering.




Methods of Qualitative Theory in Nonlinear Dynamics


Book Description

Bifurcation and chaos has dominated research in nonlinear dynamics for over two decades, and numerous introductory and advanced books have been published on this subject. There remains, however, a dire need for a textbook which provides a pedagogically appealing yet rigorous mathematical bridge between these two disparate levels of exposition. This book has been written to serve that unfulfilled need. Following the footsteps of Poincar(r), and the renowned Andronov school of nonlinear oscillations, this book focuses on the qualitative study of high-dimensional nonlinear dynamical systems. Many of the qualitative methods and tools presented in the book have been developed only recently and have not yet appeared in textbook form. In keeping with the self-contained nature of the book, all the topics are developed with introductory background and complete mathematical rigor. Generously illustrated and written at a high level of exposition, this invaluable book will appeal to both the beginner and the advanced student of nonlinear dynamics interested in learning a rigorous mathematical foundation of this fascinating subject. Sample Chapter(s). Introduction to Part II (124 KB). Chapter 7.1: Rough systems on a plane. Andronov-Pontryagin theorem (218 KB). Chapter 7.2: The set of center motions (158 KB). Chapter 7.3: General classification of center motions (155 KB). Chapter 7.4: Remarks on roughness of high-order dynamical systems (136 KB). Chapter 7.5: Morse-Smale systems (435 KB). Chapter 7.6: Some properties of Morse-Smale systems (211 KB). Contents: Structurally Stable Systems; Bifurcations of Dynamical Systems; The Behavior of Dynamical Systems on Stability Boundaries of Equilibrium States; The Behavior of Dynamical Systems on Stability Boundaries of Periodic Trajectories; Local Bifurcations on the Route Over Stability Boundaries; Global Bifurcations at the Disappearance of a Saddle-Node Equilibrium States and Periodic Orbits; Bifurcations of Homoclinic Loops of Saddle Equilibrium States; Safe and Dangerous Boundaries. Readership: Engineers, students, mathematicians and researchers in nonlinear dynamics and dynamical systems.




Dynamical Systems on Networks


Book Description

This volume is a tutorial for the study of dynamical systems on networks. It discusses both methodology and models, including spreading models for social and biological contagions. The authors focus especially on “simple” situations that are analytically tractable, because they are insightful and provide useful springboards for the study of more complicated scenarios. This tutorial, which also includes key pointers to the literature, should be helpful for junior and senior undergraduate students, graduate students, and researchers from mathematics, physics, and engineering who seek to study dynamical systems on networks but who may not have prior experience with graph theory or networks. Mason A. Porter is Professor of Nonlinear and Complex Systems at the Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, UK. He is also a member of the CABDyN Complexity Centre and a Tutorial Fellow of Somerville College. James P. Gleeson is Professor of Industrial and Applied Mathematics, and co-Director of MACSI, at the University of Limerick, Ireland.




Chaos, Bifurcations And Fractals Around Us: A Brief Introduction


Book Description

During the last twenty years, a large number of books on nonlinear chaotic dynamics in deterministic dynamical systems have appeared. These academic tomes are intended for graduate students and require a deep knowledge of comprehensive, advanced mathematics. There is a need for a book that is accessible to general readers, a book that makes it possible to get a good deal of knowledge about complex chaotic phenomena in nonlinear oscillators without deep mathematical study.Chaos, Bifurcations and Fractals Around Us: A Brief Introduction fills that gap. It is a very short monograph that, owing to geometric interpretation complete with computer color graphics, makes it easy to understand even very complex advanced concepts of chaotic dynamics. This invaluable publication is also addressed to lecturers in engineering departments who want to include selected nonlinear problems in full time courses on general mechanics, vibrations or physics so as to encourage their students to conduct further study.




Elements of Applied Bifurcation Theory


Book Description

Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.




Robot Programming by Demonstration


Book Description

Recent advances in RbD have identified a number of key issues for ensuring a generic approach to the transfer of skills across various agents and contexts. This book focuses on the two generic questions of what to imitate and how to imitate and proposes active teaching methods.




Stable and Random Motions in Dynamical Systems


Book Description

For centuries, astronomers have been interested in the motions of the planets and in methods to calculate their orbits. Since Newton, mathematicians have been fascinated by the related N-body problem. They seek to find solutions to the equations of motion for N masspoints interacting with an inverse-square-law force and to determine whether there are quasi-periodic orbits or not. Attempts to answer such questions have led to the techniques of nonlinear dynamics and chaos theory. In this book, a classic work of modern applied mathematics, Jürgen Moser presents a succinct account of two pillars of the theory: stable and chaotic behavior. He discusses cases in which N-body motions are stable, covering topics such as Hamiltonian systems, the (Moser) twist theorem, and aspects of Kolmogorov-Arnold-Moser theory. He then explores chaotic orbits, exemplified in a restricted three-body problem, and describes the existence and importance of homoclinic points. This book is indispensable for mathematicians, physicists, and astronomers interested in the dynamics of few- and many-body systems and in fundamental ideas and methods for their analysis. After thirty years, Moser's lectures are still one of the best entrées to the fascinating worlds of order and chaos in dynamics.