Big Data


Book Description

Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth




Oracle Big Data Handbook


Book Description

"Cowritten by members of Oracle's big data team, [this book] provides complete coverage of Oracle's comprehensive, integrated set of products for acquiring, organizing, analyzing, and leveraging unstructured data. The book discusses the strategies and technologies essential for a successful big data implementation, including Apache Hadoop, Oracle Big Data Appliance, Oracle Big Data Connectors, Oracle NoSQL Database, Oracle Endeca, Oracle Advanced Analytics, and Oracle's open source R offerings"--Page 4 of cover.




Executing Data Quality Projects


Book Description

Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and information within any organization. Studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. Help is here! This book describes a proven Ten Step approach that combines a conceptual framework for understanding information quality with techniques, tools, and instructions for practically putting the approach to work – with the end result of high-quality trusted data and information, so critical to today's data-dependent organizations. The Ten Steps approach applies to all types of data and all types of organizations – for-profit in any industry, non-profit, government, education, healthcare, science, research, and medicine. This book includes numerous templates, detailed examples, and practical advice for executing every step. At the same time, readers are advised on how to select relevant steps and apply them in different ways to best address the many situations they will face. The layout allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, best practices, and warnings. The experience of actual clients and users of the Ten Steps provide real examples of outputs for the steps plus highlighted, sidebar case studies called Ten Steps in Action. This book uses projects as the vehicle for data quality work and the word broadly to include: 1) focused data quality improvement projects, such as improving data used in supply chain management, 2) data quality activities in other projects such as building new applications and migrating data from legacy systems, integrating data because of mergers and acquisitions, or untangling data due to organizational breakups, and 3) ad hoc use of data quality steps, techniques, or activities in the course of daily work. The Ten Steps approach can also be used to enrich an organization's standard SDLC (whether sequential or Agile) and it complements general improvement methodologies such as six sigma or lean. No two data quality projects are the same but the flexible nature of the Ten Steps means the methodology can be applied to all. The new Second Edition highlights topics such as artificial intelligence and machine learning, Internet of Things, security and privacy, analytics, legal and regulatory requirements, data science, big data, data lakes, and cloud computing, among others, to show their dependence on data and information and why data quality is more relevant and critical now than ever before. - Includes concrete instructions, numerous templates, and practical advice for executing every step of The Ten Steps approach - Contains real examples from around the world, gleaned from the author's consulting practice and from those who implemented based on her training courses and the earlier edition of the book - Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices - A companion Web site includes links to numerous data quality resources, including many of the templates featured in the text, quick summaries of key ideas from the Ten Steps methodology, and other tools and information that are available online




Big Data


Book Description

A exploration of the latest trend in technology and the impact it will have on the economy, science, and society at large.




Data Governance


Book Description




Spark: The Definitive Guide


Book Description

Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation




Proceedings of the 2022 3rd International Conference on Big Data and Informatization Education (ICBDIE 2022)


Book Description

This is an open access book. The 2022 3rd International Conference on Big Data and Informatization Education (ICBDIE2022) was held on April 8-10, 2022 in Beijing, China. ICBDIE2022 is to bring together innovative academics and industrial experts in the field of Big Data and Informatization Education to a common forum. The primary goal of the conference is to promote research and developmental activities in Big Data and Informatization Education and another goal is to promote scientific information interchange between researchers, developers, engineers, students, and practitioners working all around the world. The conference will be held every year to make it an ideal platform for people to share views and experiences in international conference on Big Data and Informatization Education and related areas.




Data Governance


Book Description

Managing data continues to grow as a necessity for modern organizations. There are seemingly infinite opportunities for organic growth, reduction of costs, and creation of new products and services. It has become apparent that none of these opportunities can happen smoothly without data governance. The cost of exponential data growth and privacy / security concerns are becoming burdensome. Organizations will encounter unexpected consequences in new sources of risk. The solution to these challenges is also data governance; ensuring balance between risk and opportunity. Data Governance, Second Edition, is for any executive, manager or data professional who needs to understand or implement a data governance program. It is required to ensure consistent, accurate and reliable data across their organization. This book offers an overview of why data governance is needed, how to design, initiate, and execute a program and how to keep the program sustainable. This valuable resource provides comprehensive guidance to beginning professionals, managers or analysts looking to improve their processes, and advanced students in Data Management and related courses. With the provided framework and case studies all professionals in the data governance field will gain key insights into launching successful and money-saving data governance program. - Incorporates industry changes, lessons learned and new approaches - Explores various ways in which data analysts and managers can ensure consistent, accurate and reliable data across their organizations - Includes new case studies which detail real-world situations - Explores all of the capabilities an organization must adopt to become data driven - Provides guidance on various approaches to data governance, to determine whether an organization should be low profile, central controlled, agile, or traditional - Provides guidance on using technology and separating vendor hype from sincere delivery of necessary capabilities - Offers readers insights into how their organizations can improve the value of their data, through data quality, data strategy and data literacy - Provides up to 75% brand-new content compared to the first edition




Big Data and Social Science


Book Description

Both Traditional Students and Working Professionals Acquire the Skills to Analyze Social Problems. Big Data and Social Science: A Practical Guide to Methods and Tools shows how to apply data science to real-world problems in both research and the practice. The book provides practical guidance on combining methods and tools from computer science, statistics, and social science. This concrete approach is illustrated throughout using an important national problem, the quantitative study of innovation. The text draws on the expertise of prominent leaders in statistics, the social sciences, data science, and computer science to teach students how to use modern social science research principles as well as the best analytical and computational tools. It uses a real-world challenge to introduce how these tools are used to identify and capture appropriate data, apply data science models and tools to that data, and recognize and respond to data errors and limitations. For more information, including sample chapters and news, please visit the author's website.




Data Stewardship


Book Description

Data stewards in business and IT are the backbone of a successful data governance implementation because they do the work to make a company's data trusted, dependable, and high quality. Data Stewardship explains everything you need to know to successfully implement the stewardship portion of data governance, including how to organize, train, and work with data stewards, get high-quality business definitions and other metadata, and perform the day-to-day tasks using a minimum of the steward's time and effort. David Plotkin has loaded this book with practical advice on stewardship so you can get right to work, have early successes, and measure and communicate those successes, gaining more support for this critical effort. - Provides clear and concise practical advice on implementing and running data stewardship, including guidelines on how to organize based on company structure, business functions, and data ownership - Shows how to gain support for your stewardship effort, maintain that support over the long-term, and measure the success of the data stewardship effort and report back to management - Includes detailed lists of responsibilities for each type of data steward and strategies to help the Data Governance Program Office work effectively with the data stewards