Biocatalytic Synthesis of Bioactive Compounds


Book Description

Biocatalysis, the application of enzymes as catalysts for chemical synthesis, has become an increasingly valuable tool for the synthetic chemist. Enzymatic transformations carried out by enzymes or whole-cell catalysts are used for the production of a wide variety of compounds ranging from bulk to fine chemicals. The primary consideration for the incorporation of biotransformation in a synthetic sequence is regio- and stereocontrol that can be achieved with enzyme-catalyzed reactions. Biotransformations are thus becoming accepted as a method for generating optically pure compounds as well as for developing efficient routes to target compounds. This Special Issue aims to address the main applications of biocatalysts, isolated enzymes, and whole microorganisms in the synthesis of bioactive compounds and their precursors.




Pharmaceutical Biocatalysis


Book Description

This volume provides an insight into the future strategies for commercial biocatalysis with a focus on sustainable technologies, together with chemoenzymatic and biotechnological approaches to synthesize various types of approved and new active pharmaceutical ingredients (APIs) via proven and latest synthetic routes using single-step biocatalytic or enzyme cascade reactions. Many of these drugs act as enzyme inhibitors, as discussed in a chapter with a variety of examples. The targeted enzymes are involved in diseases such as different cancers, metastatic and infectious diseases, osteoporosis, and cardiovascular disorders. The biocatalysts employed for API synthesis include hydrolytic enzymes, alcohol dehydrogenases, laccases, imine reductases, reductive aminases, peroxygenases, cytochrome P450 enzymes, polyketide synthases, transaminases, and halogenases. Many of them have been improved with respect to their properties by engineering methods. The book discusses the syntheses of drugs, including alkaloids and antibiotics, non-ribosomal peptides, antimalarial and antidiabetic drugs, prenylated xanthones, antioxidants, and many important (chiral) intermediates required for the synthesis of pharmaceuticals.




Biocatalysis


Book Description

The book covers the fundamentals of the field of biocatalysis that are not treated in such detail (or even not at all) in existing biocatalysis books or biochemistry textbooks. It of course does not substitute existing biochemistry textbooks but will serve a suitable supplement as it discusses biochemical fundamentals in connection with the respective topics.With focus on the interdisciplinary nature of biocatalysis, the book contains many aspects of fundamental organic chemistry and some of inorganic chemistry as well, which should make it interesting not only for biochemistry but also for chemistry students. An important theme being emphasized in the book is that applied biocatalysis is one of the main prerequisites for a sustainable development.The topics covered ranges from basic enzyme chemistry (biosynthesis, structure, properties, interaction forces, kinetics) to a detailed description of catalytic mechanisms. It covers the fundamentals of the different enzyme classes together with their applications in native and in immobilized state or in the form of whole cells in aqueous as well as non-conventional media. Topics such as catalytic antibodies, nucleic acid catalysts, non-ribosomal peptide synthesis, evolutionary methods, and the design of cells are also included.




Biodiversity, Ecosystem Functioning, and Human Wellbeing


Book Description

The book starts by summarizing the development of the basic science and provides a meta-analysis that quantitatively tests several biodiversity and ecosystem functioning hypotheses.




Pharmaceutical Biocatalysis


Book Description

This book provides an overview of the world market of therapeutic enzymes and enzyme inhibitors, rare diseases, orphan drugs, the costs of drug development and therapies, and enzymes in downstream processing of pharmaceuticals. It discusses carbonic anhydrase inhibitors and their multiple drug interactions, carboxylesterase inhibitors for pharmaceutical applications, employment of inhibitors for the treatment of neurodegenerative diseases, use of engineered proteins, bioactive peptides, and fibrinolytic enzymes for thrombolytic therapy, and enzymes important for the design and development of new drugs/drug metabolites such as aldehyde oxidases and cytochrome P450 enzymes and the role the latter play in vascular biology and pathophysiology. The treatment of cancer is explored in connection with enzymatic amino acid deprivation therapies and new drugs that act as chemical degraders of oncogenic proteins. The book also introduces the resistance mechanisms of cancer. Furthermore, it provides an insight into the relationship between pathological conditions of cardiovascular disease and oxidative stress. The text also focuses on the potential use of nanoparticles as carriers for enzymes with medical relevance, computer-aided drug design for the identification of multi-target directed ligands, and the development of improved therapeutics through a glycan-“designer” approach. It concludes with an introduction to the chemoenzymatic synthesis of drugs.




Food Biosynthesis


Book Description

Food Biosynthesis, Volume One in the Handbook of Food Bioengineering series, describes the main aspects related to the biological production of synthetic ingredients and natural foods, highlighting the impact of bacteria and plants in the biosynthesis of key food components. Biosynthesis methods could help solve issues like food shortages, providing consumers with preferred 'natural' food options. This book represents how biologically synthesized ingredients, such as vanilla flavoring, soy, milk and egg substitutes can be utilized as a desired option future foods. It is ideal for scientists and researchers who want to improve their knowledge on the field of food biosynthesis. - Presents practical approaches of biosynthesis and the impact of biological origin on the field of food engineering - Offers alternative applications to produce natural foods - Includes processes and techniques to produce health promoting foods - Discusses the positive effects of biosynthesis on microbial production to enhance food safety - Offers a variety of perspectives on biosynthesis and its benefits for food ingredient production




Chemical and Biological Synthesis


Book Description

Synthetic chemistry plays a central role in many areas of chemical biology; utilising recent case studies, the goal of Chemical and Biological Synthesis is to highlight the full impact that the preparation of novel reagents can have in chemical biology. Covering the synthetic approaches that can be applied across the whole field of chemical biology, this book provides synthetic chemists with the broader context to which their work contributes and the biological questions that can be addressed through it. An ideal guide for postgraduate students and researchers in synthetic organic chemistry and chemical biology, Chemical and Biological Synthesis introduces synthetic techniques and methods to those who wish to incorporate synthesis for the first time in their biology-focused research programmes.




Biorefinery Production Technologies for Chemicals and Energy


Book Description

This book covers almost all of the diverse aspects of utilizing lignocellulosic biomass for valuable biorefinery product development of chemicals, alternative fuels and energy. The world has shifted towards sustainable development for the generation of energy and industrially valuable chemicals. Biorefinery plays an important role in the integration of conversion process with high-end equipment facilities for the generation of energy, fuels and chemicals. The book is divided into four parts. The first part, "Basic Principles of Biorefinery," covers the concept of biorefinery, its application in industrial bioprocessing, the utilization of biomass for biorefinery application, and its future prospects and economic performance. The second part, "Biorefinery for Production of Chemicals," covers the production of bioactive compounds, gallic acid, C4, C5, and C6 compounds, etc., from a variety of substrates. The third part, "Biorefinery for Production of Alternative Fuel and Energy," covers sustainable production of bioethanol, biodiesel, and biogas from different types of substrates. The last part of this book discusses sequential utilization of wheat straw, material balance, and biorefinery approach. The approaches presented in this book will help readers/users from different areas like process engineering and biochemistry to plan integrated and inventive methods to trim down the expenditure of the industrial manufacture process to accomplish cost-effective feasible products in biorefinery.




Chemical Synthesis of Nucleoside Analogues


Book Description

Compiles current tested and proven approaches to synthesize novel nucleoside analogues Featuring contributions from leading synthetic chemists from around the world, this book brings together and describes tested and proven approaches for the chemical synthesis of common families of nucleoside analogues. Readers will learn to create new nucleoside analogues with desired therapeutic properties by using a variety of methods to chemically modify natural nucleosides, including: Changes to the heterocyclic base Modification of substituents at the sugar ring Replacement of the furanose ring by a different carbo- or heterocyclic ring Introduction of conformational restrictions Synthesis of enantiomers Preparation of hydrolitically stable C-nucleosides Chemical Synthesis of Nucleoside Analogues covers all the major classes of nucleosides, including pronucleotides, C-nucleosides, carbanucleosides, and PNA monomers which have shown great promise as starting points for the synthesis of nucleoside analogues. The book also includes experimental procedures for key reactions related to the synthesis of nucleoside analogues, providing a valuable tool for the preparation of a number of different compounds. Throughout the book, chemical schemes and figures help readers better understand the chemical structures of nucleoside analogues and the methods used to synthesize them. Extensive references serve as a gateway to the growing body of original research studies and reviews in the field. Synthetically modified nucleosides have proven their value as therapeutic drugs, in particular as antiviral and antitumor agents. However, many of these nucleoside analogues have undesirable side effects. With Chemical Synthesis of Nucleoside Analogues as their guide, researchers have a new tool for synthesizing a new generation of nucleoside analogues that can be used as therapeutic drugs with fewer unwanted side effects.




Applied Biocatalysis in Europe: A Sustainable Tool for Improving Life Quality


Book Description

Applied biocatalysis and biotransformation, that is, the use of enzymes and whole-cell systems in manufacturing processes for synthetic purposes, has been experiencing a clear boom in recent years, which has led to the start of the so-called “fourth wave”. In fact, the latest advances in bioinformatics, system biology, process intensification, and, in particular, enzyme-directed evolution (encouraged by the 2018 Nobel Prize awarded to F. Arnold), are widening the range of the efficacy of biocatalysts and accelerating the rate at which new enzymes are becoming available, even for activities not previously known. European scientists have been very actively involved in different aspects of this field. Nine contributions dealing with different aspects of applied biocatalysis developed by European researchers are gathered in this Special Issue.