Biochemical Systems Toolbox


Book Description

The field of biochemical systems modeling and analysis is faced with an unprecedented flood of data from experimental methodologies of molecular biology. While these techniques continue to leapfrog ahead in the speed, volume and finesse with which they generate data, the methods of data analysis and interpretation, however, are still playing the 1catch-up2 game. The notions of systems analysis have found a new foothold, under the banner of 1Systems Biology2, with the promise of uncovering the rationale for the designs of biological systems from their parts lists, as they are generated by experimentation and sorted and managed by bioinformatics tools. With an aim to complement hypothesis-driven and reductionistic biological research, and not replace it, a systems biologist relies on the tools of mathematical and computational modeling to be able to contribute meaningfully to any ongoing bio-molecular systems research. These systems analysis tools, however, should not only have their roots steeped well in the theoretical foundations of biochemistry, mathematics and numerical computation, but they should be married to a framework that facilitates the required systems way of thought for all its users 6 computational scientists, experimentalists and molecular biologists alike. Hopefully, such framework-based tools would go beyond just providing fancy GUIs, numerical packages for integrating ODEs and/or optimization libraries. The intent of this thesis is to present a framework and toolbox for biochemical systems modeling, with an application in metabolic pathway analysis and/or metabolic engineering. The research presented here builds upon the tenets of a very well established and generic approach to biological systems modeling and analysis, called Biochemical Systems Theory (BST), which is almost forty years old. The nuances of modeling and practical hurdles to analysis are presented in the context of a real-time case study of analyzing the glucolytic pathway in the bacterium Lactococcus lactis. Alongside, the thesis presents the features of a MATLAB-based software application that has been built upon the framework of BST and is aptly named as Biochemical Systems Toolbox (BSTBox). The thesis presents novel contributions, made by the author during the course of his research, to state-of-the-art techniques in parameter estimation, and robustness & sensitivity analysis -- topics that, as this thesis will show, remain to be the most restrictive bottlenecks in the world of biological systems modeling and analysis.




Systems Biology


Book Description

This advanced textbook is tailored to the needs of introductory course in Systems Biology. It has a compagnion website (www.wiley-vch.de/home/systemsbiology)with solutions to questions in the book and several additional extensive working models. The book is related to the very successful previous title 'Systems Biology in Practice' and has incorporated the feedback and suggestions from many lecturers worldwide. The book addresses biologists as well as engineers and computer scientists. The interdisciplinary team of acclaimed authors worked closely together to ensure a comprehensive coverage with no overlaps in a homogenous and compelling style.




Systems Biology


Book Description

Growth in the pharmaceutical market has slowed down – almost to a standstill. One reason is that governments and other payers are cutting costs in a faltering world economy. But a more fundamental problem is the failure of major companies to discover, develop and market new drugs. Major drugs losing patent protection or being withdrawn from the market are simply not being replaced by new therapies – the pharmaceutical market model is no longer functioning effectively and most pharmaceutical companies are failing to produce the innovation needed for success. This multi-authored new book looks at a vital strategy which can bring innovation to a market in need of new ideas and new products: Systems Biology (SB). Modeling is a significant task of systems biology. SB aims to develop and use efficient algorithms, data structures, visualization and communication tools to orchestrate the integration of large quantities of biological data with the goal of computer modeling. It involves the use of computer simulations of biological systems, such as the networks of metabolites comprise signal transduction pathways and gene regulatory networks to both analyze and visualize the complex connections of these cellular processes. SB involves a series of operational protocols used for performing research, namely a cycle composed of theoretical, analytic or computational modeling to propose specific testable hypotheses about a biological system, experimental validation, and then using the newly acquired quantitative description of cells or cell processes to refine the computational model or theory.




Systems Biology


Book Description

With extraordinary clarity,the Systems Biology: Principles, Methods, and Concepts focuses on the technical practical aspects of modeling complex or organic general systems. It also provides in-depth coverage of modeling biochemical, thermodynamic, engineering, and ecological systems. Among other methods and concepts based in logic, computer




Dynamics of Biochemical Systems


Book Description







Foundations of Theoretical Approaches in Systems Biology


Book Description

If biology in the 20th century was characterized by an explosion of new technologies and experimental methods, that of the 21st has seen an equally exuberant proliferation of mathematical and computational methods that attempt to systematize and explain the abundance of available data. As we live through the consolidation of a new paradigm where experimental data goes hand in hand with computational analysis, we contemplate the challenge of fusing these two aspects of the new biology into a consistent theoretical framework. Whether systems biology will survive as a field or be washed away by the tides of future fads will ultimately depend on its success to achieve this type of synthesis. The famous quote attributed to Kurt Lewin comes to mind: "there is nothing more practical than a good theory". This book presents a wide assortment of articles on systems biology in an attempt to capture the variety of current methods in systems biology and show how they can help to find answers to the challenges of modern biology.







Systems Biology


Book Description

The first comprehensive single-authored textbook on genome-scale models and the bottom-up approach to systems biology.