Biodegradability of Conventional Plastics


Book Description

Biodegradability of Conventional Plastics: Opportunities, Challenges, and Misconceptions brings together innovative research on the biodegradability of conventional plastics, providing an extensive overview of approaches and strategies that may be implemented, while also highlighting other methods for alleviating the eventual environmental impact of plastics. The book begins by providing a lifecycle assessment of plastics, the environmental impact of plastic waste, and the factors that affect the biodegradability of plastics. The different categories and terminologies surrounding bio-based plastics and biodegradable plastics are then defined and explained in detail, as are the issues surrounding bioplastics. Other sections discuss biodegradability, approaches for enhanced biodegradability of various major types of plastics, including polyolefins, polyethylene terephthalate (PET), polystyrene, poly(vinyl chloride), automotive plastics and composites, and agricultural plastic waste. The final part of the book focuses on further techniques and emerging areas, including the utilization of chemical additives, nanomaterials, the role of microbes in terms of microbial degradation and microbial attaching, revalorization of plastic waste through industrial biotechnology, and future opportunities and challenges. - Explains the fundamentals of plastic waste, lifecycle assessment and factors that influence the biodegradability of plastics - Provides novel techniques for improved biodegradability, exploring areas such as pre-treatment, chemical additives, nanomaterials and microbial degradation - Addresses current challenges and limitations in relation to bio-based and biodegradable plastics, microplastics and nanoplastics from bioplastics and plastic waste




Advances in Sustainable Polymers


Book Description

This book discusses synthesis and characterization of sustainable polymers. The book covers opportunities and challenges of using sustainable polymers to replace existing petroleum based feedstock. This volume provides insights into the chemistry of polymerization, and discusses tailoring the properties of the polymers at the source in order fit requirements of specific applications. The book also covers processing of these polymers and their critical assessment. The book will be of use to chemists and engineers in the industry and academia working on sustainable polymers and their commercialization to replace dependence on petroleum-based polymers.




Biodegradation


Book Description

This book contains a collection of different biodegradation research activities where biological processes take place. The book has two main sections: A) Polymers and Surfactants Biodegradation and B) Biodegradation: Microbial Behaviour.




The Complete Book on Biodegradable Plastics and Polymers (Recent Developments, Properties, Analysis, Materials & Processes)


Book Description

Biodegradable plastics made with plant based materials have been available for many years. The term biodegradable means that a substance is able to be broken down into simpler substances by the activities of living organisms, and therefore is unlikely to persist in the environment. There are many different standards used to measure biodegradability, with each country having its own. The requirements range from 90 per cent to 60 per cent decomposition of the product within 60 to 180 days of being placed in a standard composting environment. They may be composed of either bio plastics, which are plastics whose components are derived from renewable raw materials, or petroleum based plastics which contain additives. Biodegradability of plastics is dependent on the chemical structure of the material and on constitution of the final product, not just on the raw materials used for its production. Polyesters play a predominant role as biodegradable plastics due to their potentially hydrolysable ester bonds. Bio based polymers are divided into three categories based on their origin and production; polymer directly extracted from biomass, polymers produced by classical chemical synthesis using renewable biomass monomer and polymers produces by microorganisms or genetically modified bacteria. In response to public concern about the effects of plastics on the environment and in particular the damaging effects of sea litter on animals and birds, legislation is being enacted or is pending in many countries to ban non degradable packing, finishing nets etc. This book basically deals with biodegradable plastics developments and environmental impacts, hydro biodegradable and photo biodegradable, starch synthetic aliphatic polyester blends, difference between standards for biodegradation, polybutylene succinate (pbs) and polybutylene, recent developments in the biopolymer industry, recent advances in synthesis of biopolymers by traditional methodologies, polymers, environmentally degradable synthetic biodegradable polymers as medical devices, polymers produced from classical chemical synthesis from bio based monomers, potential bio based packaging materials, conventional packaging materials, environmental impact of bio based materials: biodegradability and compostability, etc. Environmentally acceptable degradable polymers have been defined as polymers that degrade in the environment by several mechanisms and culminate in complete biodegradation so that no residue remains in the environment. The present book gives thorough information to biodegradable plastic and polymers. This is an excellent book for scientists engineers, students and industrial researchers in the field of bio based materials. TAGS Bioplastics and Biodegradable Plastics, Biodegradable Plastics and Polymers, Biodegradable Products, Biodegradable Plastics from Waste, How to Make Biodegradable Plastic, Biodegradable Plastic Bags, Biodegradable Plastic Bottles, Biodegradable Plastic Manufacture, Producing Biodegradable Plastic, Starch-Based Biodegradable Plastics, Biodegradable Plastic Packaging, Bio-Based Biodegradable Plastics, Biobased and Biodegradable Plastic, Biodegradable Polymers, Biodegradable Polymers Plastic, Biodegradable Polymer Materials, Synthetic Biodegradable Polymers, Biograde Biodegradable Polymers, Production of Biodegradable Polymers, Degradation of Biodegradable Polymers, Starch Based Bio-Plastics, Biodegradable Polyesters, Polyester-Based (Bio)Degradable Polymers, Polyhydroxyalkanoates, PHBH Polyesters, PLA Polyesters, Degradation Mechanism, Coated Paper, Agricultural Mulch Film, Shopping Bags, Plastic Sorting and Reprocessing, Biopolymer Industry, Industrial Biopolymer, Fiber-Reinforced Composites, Natural Polymers, Environmentally Degradable Polymers, Production of Environmentally Degradation Polymers, Synthetic Biodegradable Polymers as Medical Devices, Natural and Synthetic Biodegradable Polymers, Degradation of Commercial Biodegradable, Commercial Biodegradable Material, Biobased Packaging Materials for Food Industry, Bio Food Packaging, Compostable Packaging Bio Based Materials, Production of Biobased Products, Plastics from Potato Waste, Biodegradable Plastics from Potato Waste, Carbohydrate-Based Polymers, Synthesis of Carbohydrate Based Polymers, Synthesis and Polymerization of Anhydro Sugars, Polymerization of Anhydro Sugar, Fungal Degradation of Carbohydrate Linked Polystyrenes, Polyester Film Manufacturing, PET Film & Polyester Film, Casting, Drawing, Slitting and Winding, Coating, Production of Multilayer Co-Injection, Co-Injection Molding, Injection Blow Molding, Injection and Co-Injection Preform, NPCS, Niir, Process Technology Books, Business Consultancy, Business Consultant, Project Identification and Selection, Preparation of Project Profiles, Startup, Business Guidance, Business Guidance to Clients, Startup Project, Startup Ideas, Project For Startups, Startup Project Plan, Business Start-Up, Business Plan for Startup Business, Great Opportunity For Startup, Small Start-Up Business Project, Best Small and Cottage Scale Industries, Startup India, Stand Up India, Small Scale Industries, New Small Scale Ideas for Bioplastics and Biodegradable Plastics Industry, Biodegradable Polymers Business Ideas you can start on your own, Indian Biodegradable Polymers Industry, Small Scale Biodegradable Plastics Industry, Guide to Starting and Operating Small Business, Business Ideas for Biodegradable Plastics, How to Start Biodegradable Plastics Business, Starting Biodegradable Polymers Industry, Start your own Biodegradable Plastics Business, Biodegradable Plastics Business Plan, Business Plan for Biodegradable Plastics, Small Scale Industries in India, Biodegradable Polymers Based Small Business Ideas in India, Small Scale Industry you can start on your own, Business Plan for Small Scale Industries, Set Up Biodegradable Plastics, Profitable Small Scale Manufacturing, How to Start Small Business in India, Free Manufacturing Business Plans




Biodegradable Plastics and Polymers


Book Description

In the past 25 years, plastic products have gained universal use not only in food, clothing and shelter, but also in the transportation, construction, medical and leisure industries. Whereas previously synthetic plastics were developed as durable substitute products, increasing concern for the global environment and solid waste management has resulted in an urgent demand for biodegradable plastics. The main topics of the Third International Scientific Workshop were as follows: 1. Biodegradation of polymers and plastics 2. Environmental degradation of plastics 3. Synthesis and properties of new biodegradable plastic materials 4. Biodegradation and morphologies of polymer blends 5. Development of biodegradation test methods 6. Governmental policy, regulation and standards.




Biodegradable Polymers


Book Description

Biodegradable polymers have experienced strong growth over the last three years and are set to make further inroads into markets traditionally dominated by conventional thermoplastics in future. Four main classes of biodegradable polymers are analysed in this report, polylactic acid (PLA), starch-based polymers, synthetic biodegradable polymers, such as aromatic aliphatic co-polyesters, and polyhydroxyalkanoates (PHA). The report analyses their key performance properties, applications development, market drivers and future prospects. Each product section also contains an estimate of market size by world region and end use market, plus forecasts to 2010. There is also an analysis of key suppliers and their products.




Introduction to Bioplastics Engineering


Book Description

Introduction to Bioplastics Engineering is a practical, user-friendly reference for plastics engineers working with biopolymers and biodegradable plastics that addresses topics that are required for the successful development of cohesive bioplastic products. While there has been considerable demand for the use of bioplastics in industry, processing these bioplastics is a big challenge. The book provides plastics engineers and researchers with a fundamental, practical understanding of the differences between bioplastics and biodegradable polymers, along with guidance on the different methods used to process bioplastics. The book also covers additives and modifiers for biopolymers and their effect on properties. Examples include commercial applications of bioplastics, current bioplastics being developed, and future trends in the industry. This enables engineers, researchers, technicians, and students to understand the decisive relationship between different processing techniques, morphology, mechanical properties, and the further applications of bio-based polymers. The book presents a true engineering approach for the industry on the processing of biopolymers and biodegradable plastics – discussing the ease of use of the polymer, mechanical and thermal properties, rate of biodegradation in particular environments, and pros and cons of particular bioplastics. - Enables engineers, researchers, technicians, and students to understand the decisive relationship between different processing techniques, morphology, mechanical properties, and the further applications of bio-based polymers. - Covers additives and modifiers for biopolymers and their effect on properties - Includes examples that illustrate the commercial applications of bioplastics, current bioplastics being developed, and future trends in the industry




Experiments in Ecology


Book Description

First published in 1996, this book is a logical and consistent approach to experimental design using statistical principles.




Biofuels


Book Description

This book offers the current state of knowledge in the field of biofuels, presented by selected research centers from around the world. Biogas from waste production process and areas of application of biomethane were characterized. Also, possibilities of applications of wastes from fruit bunch of oil palm tree and high biomass/bagasse from sorghum and Bermuda grass for second-generation bioethanol were presented. Processes and mechanisms of biodiesel production, including the review of catalytic transesterification process, and careful analysis of kinetics, including bioreactor system for algae breeding, were widely analyzed. Problem of emissivity of NOx from engines fueled by B20 fuel was characterized. The closing chapters deal with the assessment of the potential of biofuels in Turkey, the components of refinery systems for production of biodegradable plastics from biomass. Also, a chapter concerning the environmental conditions of synthesis gas production as a universal raw material for the production of alternative fuels was also added.




Polymer-Based Advanced Functional Materials for Energy and Environmental Applications


Book Description

Polymer-based advanced functional materials are one of most sought after products of this global high performance material demand as polymer-based materials guarantee both processing ease and mechanical flexibilities. This volume provides a comprehensive and updated review of major innovations in the field of polymer-based advanced functional materials which focuses on constructive knowledge on advanced multifunctional materials and their resultant techno-commercial applications. The contents aim at restricting the coverage to energy and environment related applications as the said two are the most emerging application domains of polymer-based advanced functional materials. It highlights the cutting-edge and recent research findings of polymer based advanced functional materials in energy and environment sectors wherein each chapter focuses on a specific energy and environment related application of polymer-based advanced functional materials, their preparation technique, nature enhancement achieved and allied factors. This volume would be of great interest to researchers, academicians and professionals, involved in polymers, chemistry, energy and environmental research, and other allied domains.