Bioelectrics


Book Description

This book focuses on bioelectrics, a new multidisciplinary field encompassing engineering and biology with applications to the medical, environmental, food, energy, and biotechnological fields. At present, 15 universities and institutes in Japan, the USA and the EU comprise the International Consortium of Bioelectrics, intended to advance this novel and important research field. This book will serve as an introductory resource for young scientists and also as a textbook for use by both undergraduate and graduate students – the world’s first such work solely devoted to bioelectrics.




Bioelectromagnetism


Book Description

This text applies engineering science and technology to biological cells and tissues that are electrically conducting and excitable. It describes the theory and a wide range of applications in both electric and magnetic fields.




Bioelectronics and Medical Devices


Book Description

Bioelectronics and Medical Devices: From Materials to Devices-Fabrication, Applications and Reliability reviews the latest research on electronic devices used in the healthcare sector, from materials, to applications, including biosensors, rehabilitation devices, drug delivery devices, and devices based on wireless technology. This information is presented from the unique interdisciplinary perspective of the editors and contributors, all with materials science, biomedical engineering, physics, and chemistry backgrounds. Each applicable chapter includes a discussion of these devices, from materials and fabrication, to reliability and technology applications. Case studies, future research directions and recommendations for additional readings are also included. The book addresses hot topics, such as the latest, state-of the-art biosensing devices that have the ability for early detection of life-threatening diseases, such as tuberculosis, HIV and cancer. It covers rehabilitation devices and advancements, such as the devices that could be utilized by advanced-stage ALS patients to improve their interactions with the environment. In addition, electronic controlled delivery systems are reviewed, including those that are based on artificial intelligences.




Bioelectrical Signal Processing in Cardiac and Neurological Applications


Book Description

The analysis of bioelectrical signals continues to receive wide attention in research as well as commercially because novel signal processing techniques have helped to uncover valuable information for improved diagnosis and therapy. This book takes a unique problem-driven approach to biomedical signal processing by considering a wide range of problems in cardiac and neurological applications-the two "heavyweight" areas of biomedical signal processing. The interdisciplinary nature of the topic is reflected in how the text interweaves physiological issues with related methodological considerations. Bioelectrical Signal Processing is suitable for a final year undergraduate or graduate course as well as for use as an authoritative reference for practicing engineers, physicians, and researchers. A problem-driven, interdisciplinary presentation of biomedical signal processing Focus on methods for processing of bioelectrical signals (ECG, EEG, evoked potentials, EMG) Covers both classical and recent signal processing techniques Emphasis on model-based statistical signal processing Comprehensive exercises and illustrations Extensive bibliography




Bioelectronic Medicine


Book Description

"Cold Spring Harbor perspectives in medicine."




Introductory Bioelectronics


Book Description

Bioelectronics is a rich field of research involving the application of electronics engineering principles to biology, medicine, and the health sciences. With its interdisciplinary nature, bioelectronics spans state-of-the-art research at the interface between the life sciences, engineering and physical sciences. Introductory Bioelectronics offers a concise overview of the field and teaches the fundamentals of biochemical, biophysical, electrical, and physiological concepts relevant to bioelectronics. It is the first book to bring together these various topics, and to explain the basic theory and practical applications at an introductory level. The authors describe and contextualise the science by examining recent research and commercial applications. They also cover the design methods and forms of instrumentation that are required in the application of bioelectronics technology. The result is a unique book with the following key features: an interdisciplinary approach, which develops theory through practical examples and clinical applications, and delivers the necessary biological knowledge from an electronic engineer’s perspective a problem section in each chapter that readers can use for self-assessment, with model answers given at the end of the book along with references to key scientific publications discussions of new developments in the bioelectronics and biosensors fields, such as microfluidic devices and nanotechnology Supplying the tools to succeed, this text is the best resource for engineering and physical sciences students in bioelectronics, biomedical engineering and micro/nano-engineering. Not only that, it is also a resource for researchers without formal training in biology, who are entering PhD programmes or working on industrial projects in these areas.




Bioimpedance and Bioelectricity Basics


Book Description

Bioimpedance and Bioelectricity Basics, 3rd Edition paves an easier and more efficient way for people seeking basic knowledge about this discipline. This book's focus is on systems with galvanic contact with tissue, with specific detail on the geometry of the measuring system. Both authors are internationally recognized experts in the field. The highly effective, easily followed organization of the second edition has been retained, with a new discussion of state-of-the-art advances in data analysis, modelling, endogenic sources, tissue electrical properties, electrodes, instrumentation and measurements. This book provides the basic knowledge of electrochemistry, electronic engineering, physics, physiology, mathematics, and model thinking that is needed to understand this key area in biomedicine and biophysics. - Covers tissue immittance from the ground up in an intuitive manner, supported with figures and examples - New chapters on electrodes and statistical analysis - Discusses in detail dielectric and electrochemical aspects, geometry and instrumentation as well as electrical engineering concepts of network theory, providing a cross-disciplinary resource for engineers, life scientists, and physicists




Brain and Human Body Modeling


Book Description

This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields.




Ultra Low Power Bioelectronics


Book Description

This book provides, for the first time, a broad and deep treatment of the fields of both ultra low power electronics and bioelectronics. It discusses fundamental principles and circuits for ultra low power electronic design and their applications in biomedical systems. It also discusses how ultra energy efficient cellular and neural systems in biology can inspire revolutionary low power architectures in mixed-signal and RF electronics. The book presents a unique, unifying view of ultra low power analog and digital electronics and emphasizes the use of the ultra energy efficient subthreshold regime of transistor operation in both. Chapters on batteries, energy harvesting, and the future of energy provide an understanding of fundamental relationships between energy use and energy generation at small scales and at large scales. A wealth of insights and examples from brain implants, cochlear implants, bio-molecular sensing, cardiac devices, and bio-inspired systems make the book useful and engaging for students and practicing engineers.




Bioelectricity


Book Description

Vector analysis. Electrical sources and fields. Introduction to membrane biophysics. Action potentials. Propagation. Subthreshold stimuli. Extracelular fields. Membrane biophysics. The electrophysiology of the heart. The neuromuscular junction. Skeletal muscle. Functional neuromuscular stimulation.