Biofertilizers for Sustainable Agriculture and Environment


Book Description

This book provides a comprehensive overview of the benefits of biofertilizers as an alternative to chemical fertilizers and pesticides. Agricultural production has increased massively over the last century due to increased use of chemical fertilizers and pesticides, but these gains have come at a price. The chemicals are not only expensive; they also reduce microbial activity in agricultural soils and accumulate in the food chain, with potentially harmful effects for humans. Accordingly, it is high time to explore alternatives and to find solutions to overcome our increasing dependence on these chemicals. Biofertilizers, which consist of plant remains, organic matter and microorganisms, might offer an alternative. They are natural, organic, biodegradable, eco-friendly and cost-effective. Further, the microbes present in the biofertilizers are important, because they produce nutrients required for plant growth (e.g., nitrogen, phosphorus, potassium), as well as substances essential for plant growth and development (e.g., auxins and cytokinins). Biofertilizers also improve the physical properties, fertility and productivity of soil, reducing the need for chemical fertilizers while maintaining high crop yield. This makes biofertilizers a powerful tool for sustainable agriculture and a sustainable environment. The book covers the latest research on biofertilizers, ranging from beneficial fungal, bacterial and algal inoculants; to microbes for bioremediation, wastewater treatment; and recycling of biodegradable municipal, agricultural and industrial waste; as well as biocontrol agents and bio-pesticides. As such, it offers a valuable resource for researchers, academics and students in the broad fields of microbiology and agriculture.




Handbook of Biomass Valorization for Industrial Applications


Book Description

HANDBOOK of BIOMASS VALORIZATION for INDUSTRIAL APPLICATIONS The handbook provides a comprehensive view of cutting-edge research on biomass valorization, from advanced fabrication methodologies through useful derived materials, to current and potential application sectors. Industrial sectors, such as food, textiles, petrochemicals and pharmaceuticals, generate massive amounts of waste each year, the disposal of which has become a major issue worldwide. As a result, implementing a circular economy that employs sustainable practices in waste management is critical for any industry. Moreover, fossil fuels, which are the primary sources of fuel in the transportation sector, are also being rapidly depleted at an alarming rate. Therefore, to combat these global issues without increasing our carbon footprint, we must look for renewable resources to produce chemicals and biomaterials. In that context, agricultural waste materials are gaining popularity as cost-effective and abundantly available alternatives to fossil resources for the production of a variety of value-added products, including renewable fuels, fuel components, and fuel additives. Handbook of Biomass Valorization for Industrial Applications investigates current and emerging feedstocks, as well as provides in-depth technical information on advanced catalytic processes and technologies that enable the development of all possible alternative energy sources. The 22 chapters of this book comprehensively cover the valorization of agricultural wastes and their various uses in value-added applications like energy, biofuels, fertilizers, and wastewater treatment. Audience The book is intended for a very broad audience working in the fields of materials sciences, chemical engineering, nanotechnology, energy, environment, chemistry, etc. This book will be an invaluable reference source for the libraries in universities and industrial institutions, government and independent institutes, individual research groups, and scientists working in the field of valorization of biomass.




Biofertilizers for Sustainable Soil Management


Book Description

The alkaline calcareous nature, high pH, salinity, heavy metals pollution, and low organic matter content of soils in many parts of the world have diminished the soil fertility and made essential nutrients unavailable to crops. To cope with the poor availability of soil nutrients, improve soil health, and feed the fast-growing global population, the farming community is using millions of tons of expensive chemical fertilizers in their fields to maintain an adequate level of nutrients for crop sustainability as well as to ensure food security. In this scenario, the exploitation of biofertilizers has become of paramount importance in the agricultural sector for their potential role in food safety and sustainable crop production. Bearing in mind the key importance of biofertilizers, this book examines the role of biofertilizers in sustainable management of soil and plant health under different conditions of the changing climate. Finally, it provides a platform for scientists and academicians all over the world to promote, share, and discuss various new issues, developments, and limitations in biofertilizers, crops, and beneficial microbes. Salient Features: Mainly focuses on the role of biofertilizers in managing soils for improving crop and vegetable yields as a substitute for chemical fertilizers. Highlights the valuable information for the mechanism of action, factors affecting, and limitations of biofertilizers in the wider ecosystem. Presents a diversity of techniques used across plant science. Designed to cater to the needs of researchers, technologists, policy makers, and undergraduates and postgraduates studying in the fields of organic agriculture, soil microbiology, soil biology, soil fertility, and fertilizers. Addresses plant responses to biofertilizers.




Biofertilizers


Book Description

Great attention has been paid to reduce the use of conventional chemical fertilizers harming living beings through food chain supplements from the soil environment. Therefore, it is necessary to develop alternative sustainable fertilizers to enhance soil sustainability and agriculture productivity. Biofertilizers are the substance that contains microorganisms (bacteria, algae, and fungi) living or latent cells that can enrich the soil quality with nitrogen, phosphorous, potassium, organic matter, etc. They are a cost-effective, biodegradable, and renewable source of plant nutrients/supplements to improve the soil-health properties. Biofertilizers emerge as an attractive alternative to chemical fertilizers, and as a promising cost-effective technology for eco-friendly agriculture and a sustainable environment that holds microorganisms which enhance the soil nutrients' solubility leading a raise in its fertility, stimulates crop growth and healthy food safety. This book provides in-depth knowledge about history and fundamentals to advances biofertilizers, including latest reviews, challenges, and future perspectives. It covers fabrication approaches, and various types of biofertilizers and their applications in agriculture, environment, forestry and industrial sectors. Also, organic farming, quality control, quality assurance, food safety and case-studies of biofertilizers are briefly discussed. Biofertilizers' physical properties, affecting factors, impact, and industry profiles in the market are well addressed. This book is an essential guide for farmers, agrochemists, environmental engineers, scientists, students, and faculty who would like to understand the science behind the sustainable fertilizers, soil chemistry and agroecology.




Biofertilizers and Biopesticides in Sustainable Agriculture


Book Description

This new volume, Biofertilizers and Biopesticides in Sustainable Agriculture, presents strategies for the management of soil and crop diseases. Microbes have attracted worldwide attention due to their role in disease management and remediation of polluted soils. Taking a sustainable approach, this book explores the means of integrating various microbial management approaches to achieve the desired levels of crop yield under both conventional soils and neglected soils through the use of biopesticides and other botanicals as well as biomolecules. This book also presents a broad and updated view of molecular nitrogen fixation and phosphate-solubilizing and sulfur-transforming microbes for nutrition of crops in relation to the role of metal tolerant microbes in providing protection to plants grown in metal-contaminated soils. The preparation and application of biofertilizers, utilization of household waste materials, and use of genetically modified microorganisms (GMOs) in plant growth and development are also well discussed in the volume.




Soil Fertility Management for Sustainable Development


Book Description

Soil fertility is the backbone of agricultural systems and plays a key role in determining food quantity and quality. In recent decades, soil fertility has decreased due to indiscriminate use of agrochemicals, and nations around the globe are now facing the challenge of increasing food production while sustainably maintaining soil fertility. Written by leading international scientists in the field, this book explores soil fertility management strategies, including agronomic, microbiological and soil-science based strategies. Highlighting the practices that can be incorporated into organic farming and discussing recent advances, it is a valuable resource for researchers wanting to broaden their vision and the scope of their investigations.




Sustainable Crop Production


Book Description

This book includes twenty-one comprehensive chapters addressing various soil and crop management issues, including modern techniques in enhancing crop production in the era of climate change. There are a few case studies and experimental evidence about these production systems in specific locations. Particular focus is provided on the state-of-the-art of biotechnology, nanotechnology, and precision agriculture, as well as many other recent approaches in ensuring sustainable crop production. This book is useful for undergraduate and graduate students, teachers, and researchers, particularly in the fields of crop science, soil science, and agronomy.




Integrated Nutrient Management (INM) in a Sustainable Rice-Wheat Cropping System


Book Description

Agriculture is the main occupation in India and about 75% of its population depends directly or indirectly on agriculture for their livelihood. It is the dominant sector that contributes 18% of the gross domestic product. Thus, agriculture is the foundation of the Indian economy. The maximum share of Indian exports is also from the agriculture sector. As the population of the country is increasing trem- dously, approximately at the rate of 19 million every year over the existing popu- tion of more than 1 billion (approximately 1. 18 billion), the food grain production must necessarily be increased. This can be done by increasing crop production to match the population growth rate of 2. 2% per annum, which is expected to stabilize at 1. 53 billion around 2050. There is no doubt that the Green Revolution in India during the late 1960s brought self-sufficiency in food grain production, mainly through the increase in rice and wheat crop yields – the two main crops of the country which play an important role from food security point of view. However, the excessive use of fertilizers and pesticides, and the neglect of organic manures for these crops, has resulted in the deterioration of physical, chemical and biological health of the ri- and wheat-growing soils. Owing to the deterioration of the health of these soils, the productivity of the rice–wheat cropping system has now either got reduced or in some places has become constant for the last decade.




The Complete Technology Book On Bio-Fertilizer And Organic Farming


Book Description

Bio-Fertilizers are natural fertilizers which are microbial inoculants of bacteria, algae, fungi alone or in combination and they augment the availability of nutrients to the plants. The use of bio-fertilizers, in preference to chemical fertilizers, offers economic and ecological benefits by way of soil health and fertility to farmers. In view of the immense potential of bio-fertilizer technology covers all major types of bacterial fertilizers. This book will be of use and interest to consultants, researchers, libraries, entrepreneurs, manufacturers of bio-fertilizer and for those who wants to venture in to this field.




Legumes for Soil Health and Sustainable Management


Book Description

Sustainable management of soils is an important global issue of the 21st century. Feeding roughly 8 billion people with an environmentally sustainable production system is a major challenge, especially considering the fact that 10% of the world’s population at risk of hunger and 25% at risk of malnutrition. Accordingly, the 68th United Nations (UN) general assembly declared 2016 the “International Year of Pulses” to raise awareness and to celebrate the role of pulses in human nutrition and welfare. Likewise, the assembly declared the year 2015 as the “International Year of Soils” to promote awareness of the role of “healthy soils for a healthy life” and the International Union of Soil Science (IUSS) has declared 2015-2024 as the International Decade of Soils. Including legumes in cropping systems is an important toward advancing soil sustainability, food and nutritional security without compromising soil quality or its production potential. Several textbooks and edited volumes are currently available on general soil fertility or on legumes but‚ to date‚ none have been dedicated to the study of “Legumes for Soil Health and Sustainable Management”. This is important aspect, as the soil, the epidermis of the Earth (geoderma)‚ is the major component of the terrestrial biosphere. This book explores the impacts of legumes on soil health and sustainability, structure and functioning of agro-ecosystems, agronomic productivity and food security, BNF, microbial transformation of soil N and P, plant-growth-promoting rhizobacteria, biofertilizers, etc. With the advent of fertilizers, legumes have been sidelined since World War II, which has produced serious consequences for soils and the environment alike. Therefore, legume-based rational cropping/soil management practices must support environmentally and economically sustainable agroecosystems based on (sequential) rotation and intercropping considerations to restore soil health and sustainability. All chapters are amply illustrated with appropriately placed data, tables, figures, and photographs, and supported with extensive and cutting-edge references. The editors have provided a roadmap for the sustainable development of legumes for food and nutritional security and soil sustainability in agricultural systems, offering a unique resource for teachers, researchers, and policymakers, as well as undergraduate and graduate students of soil science, agronomy, ecology, and the environmental sciences.