Bioalcohol Production


Book Description

Bioethanol is one of the main biofuels currently used as a petroleum-substitute in transport applications. However, conflicts over food supply and land use have made its production and utilisation a controversial topic. Second generation bioalcohol production technology, based on (bio)chemical conversion of non-food lignocellulose, offers potential advantages over existing, energy-intensive bioethanol production processes. Food vs. fuel pressures may be reduced by utilising a wider range of lignocellulosic biomass feedstocks, including energy crops, cellulosic residues, and, particularly, wastes.Bioalcohol production covers the process engineering, technology, modelling and integration of the entire production chain for second generation bioalcohol production from lignocellulosic biomass. Primarily reviewing bioethanol production, the book's coverage extends to the production of longer-chain bioalcohols which will be elemental to the future of the industry.Part one reviews the key features and processes involved in the pretreatment and fractionation of lignocellulosic biomass for bioalcohol production, including hydrothermal and thermochemical pretreatment, and fractionation to separate out valuable process feedstocks. Part two covers the hydrolysis (saccharification) processes applicable to pretreated feedstocks. This includes both acid and enzymatic approaches and also importantly covers the development of particular enzymes to improve this conversion step. This coverage is extended in Part three, with chapters reviewing integrated hydrolysis and fermentation processes, and fermentation and co-fermentation challenges of lignocellulose-derived sugars, as well as separation and purification processes for bioalcohol extraction.Part four examines the analysis, monitoring and modelling approaches relating to process and quality control in the pretreatment, hydrolysis and fermentation steps of lignocellulose-to-bioalcohol production. Finally, Part five discusses the life-cycle assessment of lignocellulose-to-bioalcohol production, as well as the production of valuable chemicals and longer-chain alcohols from lignocellulosic biomass.With its distinguished international team of contributors, Bioalcohol production is a standard reference for fuel engineers, industrial chemists and biochemists, plant scientists and researchers in this area. - Provides an overview of the life-cycle assessment of lignocelluloses-to-bioalcohol production - Reviews the key features and processes involved in the pre-treatment and fractionation of lignocellulosic biomass for bioalcohol production - Examines the analysis, monitoring and modelling approaches relating to process and quality control in pre-treatment, hydrolysis and fermentation




Frontiers in Bioenergy and Biofuels


Book Description

Frontiers in Bioenergy and Biofuels presents an authoritative and comprehensive overview of the possibilities for production and use of bioenergy, biofuels, and coproducts. Issues related to environment, food, and energy present serious challenges to the success and stability of nations. The challenge to provide energy to a rapidly increasing global population has made it imperative to find new technological routes to increase production of energy while also considering the biosphere's ability to regenerate resources. The bioenergy and biofuels are resources that may provide solutions to these critical challenges. Divided into 25 discreet parts, the book covers topics on characterization, production, and uses of bioenergy, biofuels, and coproducts. Frontiers in Bioenergy and Biofuels provides an insight into future developments in each field and extensive bibliography. It will be an essential resource for researchers and academic and industry professionals in the energy field.




The Future of Glycerol


Book Description

By-products of global biodiesel manufacturing are a modern day global fact responsible for igniting a number of year's worldwide intense research activity into human chemical ingenuity. This highly anticipated 2nd Edition depicts how practical limitations posed by glycerol chemistry are solved based on the understanding of the fundamental chemistry of glycerol and by application of catalysis science and technology. The authors report and comment on employable, practical avenues applicable to convert glycerol into value added products of mass consumption. The best-selling reference book in the.




Handbook of Biofuels Production


Book Description

Handbook of Biofuels Production, Second Edition, discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage. Research and development in this field is aimed at improving the quality and environmental impact of biofuels production, as well as the overall efficiency and output of biofuels production plants. The book provides a comprehensive and systematic reference on the range of biomass conversion processes and technology. Key changes for this second edition include increased coverage of emerging feedstocks, including microalgae, more emphasis on by-product valorization for biofuels' production, additional chapters on emerging biofuel production methods, and discussion of the emissions associated with biofuel use in engines. The editorial team is strengthened by the addition of two extra members, and a number of new contributors have been invited to work with authors from the first edition to revise existing chapters, thus offering fresh perspectives. - Provides systematic and detailed coverage of the processes and technologies being used for biofuel production - Discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage - Reviews the production of both first and second generation biofuels - Addresses integrated biofuel production in biorefineries and the use of waste materials as feedstocks




Biogas from Waste and Renewable Resources


Book Description

Written as a practical introduction to biogas plant design and operation, this book fills a huge gap by presenting a systematic guide to this emerging technology -- information otherwise only available in poorly intelligible reports by US governmental and other official agencies. The author draws on teaching material from a university course as well as a wide variety of industrial biogas projects he has been involved with, thus combining didactical skill with real-life examples. Alongside biological and technical aspects of biogas generation, this timely work also looks at safety and legal aspects as well as environmental considerations.




Handbook of Bioenergy Crops


Book Description

This completely revised second edition includes new information on biomass in relation to climate change, new coverage of vital issues including the "food versus fuel" debate, and essential new information on "second generation" fuels and advances in conversion techniques. The book begins with a guide to biomass accumulation, harvesting, transportation and storage, as well as conversion technologies for biofuels. This is followed by an examination of the environmental impact and economic and social dimensions, including prospects for renewable energy. The book then goes on to cover all the main potential energy crops.




Principles of Environmental Chemistry


Book Description

Today there is worldwide concern that many of our human activities are endangering—perhaps permanently—the quality of the environment. We must act fast to address these growing problems. The second edition of Principles of Environmental Chemistry exposes readers to environmental issues from a perspective that appreciates that chemical reactions drive all natural processes and outlines the connection between those processes and human behavior. Written for students with knowledge of general chemistry, this text provides the tools needed to understand the underlying chemical processes operating in the environment, while demonstrating how challenging it is to measure these systems. With this concept of interdependence students will begin to understand pressing environmental issues like ozone depletion, global warming, air and water pollution, and the hazards of radioactivity.




Engineering Solutions for CO2 Conversion


Book Description

A comprehensive guide that offers a review of the current technologies that tackle CO2 emissions The race to reduce CO2 emissions continues to be an urgent global challenge. Engineering Solutions for CO2 Conversion offers a thorough guide to the most current technologies designed to mitigate CO2 emissions ranging from CO2 capture to CO2 utilization approaches. With contributions from an international panel representing a wide range of expertise, this book contains a multidisciplinary toolkit that covers the myriad aspects of CO2 conversion strategies. Comprehensive in scope, it explores the chemical, physical, engineering and economical facets of CO2 conversion. Engineering Solutions for CO2 Conversion explores a broad range of topics including linking CFD and process simulations, membranes technologies for efficient CO2 capture-conversion, biogas sweetening technologies, plasma-assisted conversion of CO2, and much more. This important resource: Addresses a pressing concern of global environmental damage, caused by the greenhouse gases emissions from fossil fuels Contains a review of the most current developments on the various aspects of CO2 capture and utilization strategies Incldues information on chemical, physical, engineering and economical facets of CO2 capture and utilization Offers in-depth insight into materials design, processing characterization, and computer modeling with respect to CO2 capture and conversion Written for catalytic chemists, electrochemists, process engineers, chemical engineers, chemists in industry, photochemists, environmental chemists, theoretical chemists, environmental officers, Engineering Solutions for CO2 Conversion provides the most current and expert information on the many aspects and challenges of CO2 conversion.




Bioenergy Systems for the Future


Book Description

Bioenergy Systems for the Future: Prospects for Biofuels and Biohydrogen examines the current advances in biomass conversion technologies for biofuels and biohydrogen production, including their advantages and challenges for real-world application and industrial-scale implementation. In its first part, the book explores the use of lignocellulosic biomass and agricultural wastes as feedstock, also addressing biomass conversion into biofuels, such as bioethanol, biodiesel, bio-methane, and bio-gasoline. The chapters in Part II cover several different pathways for hydrogen production, from biomass, including bioethanol and bio-methane reforming and syngas conversion. They also include a comparison between the most recent conversion technologies and conventional approaches for hydrogen production. Part III presents the status of advanced bioenergy technologies, such as applications of nanotechnology and the use of bio-alcohol in low-temperature fuel cells. The role of advanced bioenergy in a future bioeconomy and the integration of these technologies into existing systems are also discussed, providing a comprehensive, application-oriented overview that is ideal for engineering professionals, researchers, and graduate students involved in bioenergy. - Explores the most recent technologies for advanced liquid and gaseous biofuels production, along with their advantages and challenges - Presents real-life application of conversion technologies and their integration in existing systems - Includes the most promising pathways for sustainable hydrogen production for energy applications




Chemicals from Biomass


Book Description

Chemicals from Biomass: Integrating Bioprocesses into Chemical Production Complexes for Sustainable Development helps engineers optimize the development of new chemical and polymer plants that use renewable resources to replace the output of goods and services from existing plants. It also discusses the conversion of those existing plants into faci