Iron Cycle in Oceans


Book Description

This book presents an up to date view of iron biogeochemistry in the ocean. It encompasses the description of iron speciation, the analytical methods used to measure the different iron forms in seawater and the different iron biogeochemical models.




The microbial ferrous wheel: iron cycling in terrestrial, freshwater, and marine environments


Book Description

In the past 15 years, there has been steady growth in work relating to the microbial iron cycle. It is now well established that in anaerobic environments coupling of organic matter utilization to Fe reduction is a major pathway for anaerobic respiration. In iron-rich circumneutral environments that exist at oxic-anoxic boundaries, significant progress has been made in demonstrating that unique groups of microbes can grow either aerobically or anaerobically using Fe as a primary energy source. Likewise, in high iron acidic environments, progress has been made in the study of communities of microbes that oxidize iron, and in understanding the details of how certain of these organisms gain energy from Fe-oxidation. On the iron scarcity side, it is now appreciated that in large areas of the open ocean Fe is a key limiting nutrient; thus, a great deal of research is going into understanding the strategies microbial cells, principally phytoplankton, use to acquire iron, and how the iron cycle may impact other nutrient cycles. Finally, due to its abundance, iron has played an important role in the evolution of Earth’s primary biogeochemical cycles through time. The aim of this Research Topic is to gather contributions from scientists working in diverse disciplines who have common interests in iron cycling at the process level, and at the organismal level, both from the perspective of Fe as an energy source, or as a limiting nutrient for primary productivity in the ocean. The range of disciplines may include: geomicrobiologists, microbial ecologists, microbial physiologists, biological oceanographers, and biogeochemists. Articles can be original research, techniques, reviews, or synthesis papers. An overarching goal is to demonstrate the environmental breadth of the iron cycle, and foster understanding between different scientific communities who may not always be aware of one another’s work.







Encyclopedia of Astrobiology


Book Description

The interdisciplinary field of Astrobiology constitutes a joint arena where provocative discoveries are coalescing concerning, e.g. the prevalence of exoplanets, the diversity and hardiness of life, and its increasingly likely chances for its emergence. Biologists, astrophysicists, biochemists, geoscientists and space scientists share this exciting mission of revealing the origin and commonality of life in the Universe. The members of the different disciplines are used to their own terminology and technical language. In the interdisciplinary environment many terms either have redundant meanings or are completely unfamiliar to members of other disciplines. The Encyclopedia of Astrobiology serves as the key to a common understanding. Each new or experienced researcher and graduate student in adjacent fields of astrobiology will appreciate this reference work in the quest to understand the big picture. The carefully selected group of active researchers contributing to this work and the expert field editors intend for their contributions, from an internationally comprehensive perspective, to accelerate the interdisciplinary advance of astrobiology.







Biogeochemical Cycle of Iron


Book Description

It is now recognized that iron (Fe) availability dictates the efficiency of the global biological carbon pump such that any perturbation of Fe sources will lead to changes in the carbon cycles with consequences on both other major nutrient cycles and the climate system, controlling about 50% of the worldwide ocean primary production. However, the underlying processes themselves that affect the pathways releasing and trapping Fe, and the relative predominance of Fe sources among the different ocean basins are still poorly constrained. More importantly, the extent to which both the chemical and the physical speciation of Fe are available and accessible for marine organisms, once it enters the ocean, remains uncertain. The reactivity of Fe within the marine environment will depend on its redox and complexation state, with DFe generally considered the most bioavailable form for phytoplankton and Fe-binding organic ligands likely increasing the residence time of Fe that enables enhanced DFe concentrations way above its inorganic solubility in seawater (c.a. 10 pmol L-1).In this context and as part of the international GEOTRACES program, this thesis aims at improving our knowledge on Fe biogeochemical cycle in the ocean and its interactions with the phytoplankton community structure to better constrain the bioavailable forms of Fe. The objectives of this thesis revolve around three scientific questions: 1) What are the distributions, sources, and sinks of dissolved iron? 2) What is the link between the phytoplankton community structure and dissolved iron concentrations? 3) How the organic speciation of dissolved iron affects its concentrations and bioavailability for the phytoplankton community? These three questions were investigated through two contrasted areas: the North Atlantic Ocean (GEOVIDE, GA01 GEOTRACES voyage, PIs G. Sarthou and P. Lherminier) and the Southern Ocean (HEOBI, GIpr05 GEOTRACES voyage, PIs A. Bowie, T. Trull, Z. Chase) the former being occasionally seasonally depleted in Fe, the latter permanently.







Microbial Iron Acquisition and Organic Matter Cycling in the Marine Environment


Book Description

As a scarce but essential micronutrient for microbial growth in the marine environment, iron plays a critical role in supporting marine primary productivity and is tightly coupled to the cycling of carbon and additional macronutrients. While significant progress in recent years has been made in understanding the distribution of iron and iron-binding ligands in the marine environment, many questions remain regarding the mechanistic processes underlying these distributions. Heterotrophic bacteria serve as the primary drivers of the turnover of organic matter in the marine environment and have a significant cellular iron requirement, making them an important link between iron and carbon biogeochemical cycles. The work presented in this dissertation aims to improve our understanding of the molecular mechanisms by which heterotrophic marine bacteria acquire iron from their surroundings and the subsequent effects of their metabolic activities on both iron and carbon biogeochemical cycling. We have first developed Alteromonas macleodii ATCC 27126 as a model marine organism for the study of iron acquisition by heterotrophic bacteria. This has allowed us to characterize outer membrane TonB-dependent transporters for organically complexed forms of iron across the genus Alteromonas. This work revealed that a high diversity of iron-ligand compounds in the marine environment are potentially bioavailable. We have also utilized Alteromonas macleodii ATCC 27126 as a model organism for studying the functional role of siderophore production in iron acquisition in the marine environment. Through the insertional inactivation of the petrobactin biosynthetic pathway, we have determined that siderophore production increases the bioavailability of non-labile iron sources such as particulate minerals. Finally, in microcosm field experiments, we examined the transcriptional response of natural heterotrophic bacterial communities in the southern California Current System to iron additions demonstrating direct iron limitation of this community with consequences for downstream carbon processing. Together, this work sheds light on the role of heterotrophic bacteria at multiple points within the marine iron cycle, from the incorporation of iron into the marine environment to controlling the balance between the export and recycling of iron and macronutrients. It is our hope that this work results in an improved mechanistic understanding of marine iron biogeochemical cycling.




Metal Ions in Biological Systems, Volume 43 - Biogeochemical Cycles of Elements


Book Description

Metal Ions in Biological Systems is devoted to increasing our understanding of the relationship between the chemistry of metals and life processes. The volumes reflect the interdisciplinary nature of bioinorganic chemistry and coordinate the efforts of researchers in the fields of biochemistry, inorganic chemistry, coordination chemis




Metal Ions in Biological Systems


Book Description

"Volume 35 covers the biological cycling of iron in oceans; the transport of iron in microorganisms, fungi, and plants; the roles and properties of siderophores; the regulation of iron transport and uptake in animals, plants, and microorganisms, and more. "