Bioinorganic Catalysis


Book Description

"Provides the latest research results and suggests new topics for interdisciplinary study of metal ions, catalysis, and biochemical systems. Second Edition highlights potential applications; includes new chapters on zinc and FeS clusters; presents new X-ray analysis of metalloenzymes; and more."




Bioinorganic Catalysis


Book Description

"Provides the latest research results and suggests new topics for interdisciplinary study of metal ions, catalysis, and biochemical systems. Second Edition highlights potential applications; includes new chapters on zinc and FeS clusters; presents new X-ray analysis of metalloenzymes; and more."




Homogeneous Biomimetic Oxidation Catalysis


Book Description

Advances in Inorganic Chemistry Volume 58 focuses on homogeneous biomimetic oxidation catalysis. Contributions by leading experts in the field cover important advances in inorganic and bioinorganic chemistry. Contributions include diversity-based approaches to selective biomimetic oxidation catalysis; the selective conversion of hydrocarbons with H2O2 using biomimetic non-heme iron and manganese oxidation catalysis; DNA oxidation by copper and manganese complexes; influences of the ligand in copper-dioxygen complex-formation and substrate oxidations; biomimetic oxidations by dinuclear and trinuclear copper complexes. In the final contribution the authors focus on green oxidation of alcohols using biomimetic copper complexes and enzymes as catalysts. Volume 58 provides another welcomed addition to the widely acclaimed series, Advances in Inorganic Chemistry. * Includes new information on the important advances in inorganic and bioinorganic chemistry * Each chapter is fully referenced * Contains comprehensive reviews written by leading experts in the field




Copper Bioinorganic Chemistry: From Health To Bioinspired Catalysis


Book Description

Bioinorganic chemistry is an interdisciplinary research field which centers on metals in biology. Over the past few decades, advances in chemistry, biology as well as in spectroscopic methods have shed light on the role of copper in human pathologies and allowed the growing discovery of copper-containing biological systems. Following this trend, much effort is being constantly chanelled towards understanding these fundamental biological processes or enzymes. In addition, chemists are developing molecules to target copper or copper enzymes as therapeutic tools. On the other hand, inspired by the function of biological systems, small molecular weight complexes inspired by the active site of copper enzymes are being prepared and studied. These bioinspired complexes can function both as mechanistic tools and as functional catalysts for oxidative transformations.The seven chapters in this book, contributed by internationally recognized authors cover recent developments on these aspects illustrated by interdisciplinary fields from biology, chemistry, spectroscopy to bioinspired catalysis. It contains aspects ranging from human health issues (copper homeostasis in bacteria and the development of molecules as anticancer or antibacterial agents) to bioinspired catalysis.




Activation of Small Molecules


Book Description

The first to combine both the bioinorganic and the organometallic view, this handbook provides all the necessary knowledge in one convenient volume. Alongside a look at CO2 and N2 reduction, the authors discuss O2, NO and N2O binding and reduction, activation of H2 and the oxidation catalysis of O2. Edited by the highly renowned William Tolman, who has won several awards for his research in the field.




Fundamentals of Organometallic Catalysis


Book Description

Vor allem an Studenten fortgeschrittener Semester und Doktoranden gerichtet ist dieses Lehrbuch der Katalyse mit metallorganischen Verbindungen, das auch biologisch relevanten Reaktionen viel Platz einräumt. Hervorragend zum Selbststudium geeignet - mit zahlreichen Übungsaufgaben, nach Schwierigkeitsgraden geordnet und durch Lösungen ergänzt.




Bioinorganic Chemistry -- Inorganic Elements in the Chemistry of Life


Book Description

The field of Bioinorganic Chemistry has grown significantly in recent years; now one of the major sub-disciplines of Inorganic Chemistry, it has also pervaded other areas of the life sciences due to its highly interdisciplinary nature. Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, Second Edition provides a detailed introduction to the role of inorganic elements in biology, taking a systematic element-by-element approach to the topic. The second edition of this classic text has been fully revised and updated to include new structure information, emerging developments in the field, and an increased focus on medical applications of inorganic compounds. New topics have been added including materials aspects of bioinorganic chemistry, elemental cycles, bioorganometallic chemistry, medical imaging and therapeutic advances. Topics covered include: Metals at the center of photosynthesis Uptake, transport, and storage of essential elements Catalysis through hemoproteins Biological functions of molybdenum, tungsten, vanadium and chromium Function and transport of alkaline and alkaline earth metal cations Biomineralization Biological functions of the non-metallic inorganic elements Bioinorganic chemistry of toxic metals Biochemical behavior of radionuclides and medical imaging using inorganic compounds Chemotherapy involving non-essential elements This full color text provides a concise and comprehensive review of bioinorganic chemistry for advanced students of chemistry, biochemistry, biology, medicine and environmental science.




The Biorganic Chemistry of Enzymatic Catalysis


Book Description

This volume grew out of a symposium organized by the students of Professor Myron L. Bender. His research focused on the mechanisms of enzymatic catalysis and was instrumental in showing that enzymes do not possess magical powers to accelerate reactions a trillion times on an average, but follow simple rules of chemistry. A group of scientists who were trained by Bender have contributed some of their work to this book to pay homage to their mentor. The range of topics covered is such that researchers and industry with interest in biological chemistry will gain knowledge from the advances being made in related fields. The book shows organic chemists what advances have taken place in biological chemistry and biochemists will discover how principles of organic chemistry can be applied to reveal the powers of enzymatic catalysis.




Mechanistic Bioinorganic Chemistry


Book Description

Provides an understanding of bioinorganic reactions from a mechanistic point of view. Illustrates how spectroscopy can be used to establish mechanisms and how model compounds provide mechanistic insight for enzymes. Demonstrates how to apply numerous physical methods to understanding mechanisms of redox catalysis by metal centers in enzymes. Highlights the interrelationships between the roles of metal ions in electron transfer, redox catalysis, structural roles, and hydrolytic chemistry. Provides mechanistic insights into water oxidation, nitrogen fixation, nucleic acid oxidation and hydrolysis, oxygen binding, catalase reactions, and electron transfer.