Activated Sludge Models


Book Description

This book has been produced to give a total overview of the Activated Sludge Model (ASM) family at the start of 2000 and to give the reader easy access to the different models in their original versions. It thus presents ASM1, ASM2, ASM2d and ASM3 together for the first time. Modelling of activated sludge processes has become a common part of the design and operation of wastewater treatment plants. Today models are being used in design, control, teaching and research. Contents ASM3: Introduction, Comparison of ASM1 and ASM3, ASM3: Definition of compounds in the model, ASM3: Definition of processes in the Model, ASM3: Stoichiometry, ASM3: Kinetics, Limitations of ASM3, Aspects of application of ASM3, ASM3C: A Carbon based model, Conclusion ASM 2d: Introduction, Conceptual Approach, ASM 2d, Typical Wastewater Characteristics and Kinetic and Stoichiometric Constants, Limitations, Conclusion ASM 2: Introduction, ASM 2, Typical Wastewater Characteristics and Kinetic and Stoichiometric Constants, Wastewater Characterization for Activated Sludge Processes, Calibration of the ASM 2, Model Limitations, Conclusion, Bibliography ASM 1: Introduction, Method of Model Presentation, Model Incorporating Carbon Oxidation Nitrification and Denitrification, Characterization of Wastewater and Estimation of Parameter Values, Typical Parameter Ranges, Default Values, and Effects of Environmental Factors, Assumptions, Restrictions and Constraints, Implementation of the Activated Sludge Model Scientific and Technical Report No.9




Bioelectrochemical Systems


Book Description

In the context of wastewater treatment, Bioelectrochemical Systems (BESs) have gained considerable interest in the past few years, and several BES processes are on the brink of application to this area. This book, written by a large number of world experts in the different sub-topics, describes the different aspects and processes relevant to their development. Bioelectrochemical Systems (BESs) use micro-organisms to catalyze an oxidation and/or reduction reaction at an anodic and cathodic electrode respectively. Briefly, at an anode oxidation of organic and inorganic electron donors can occur. Prime examples of such electron donors are waste organics and sulfides. At the cathode, an electron acceptor such as oxygen or nitrate can be reduced. The anode and the cathode are connected through an electrical circuit. If electrical power is harvested from this circuit, the system is called a Microbial Fuel Cell; if electrical power is invested, the system is called a Microbial Electrolysis Cell. The overall framework of bio-energy and bio-fuels is discussed. A number of chapters discuss the basics – microbiology, microbial ecology, electrochemistry, technology and materials development. The book continues by highlighting the plurality of processes based on BES technology already in existence, going from wastewater based reactors to sediment based bio-batteries. The integration of BESs into existing water or process lines is discussed. Finally, an outlook is provided of how BES will fit within the emerging biorefinery area.




Process Design Manual for Nitrogen Control


Book Description




Biological Wastewater Treatment


Book Description

For information on the online course in Biological Wastewater Treatment from UNESCO-IHE, visit: http://www.iwapublishing.co.uk/books/biological-wastewater-treatment-online-course-principles-modeling-and-design Over the past twenty years, the knowledge and understanding of wastewater treatment have advanced extensively and moved away from empirically-based approaches to a first principles approach embracing chemistry, microbiology, physical and bioprocess engineering, and mathematics. Many of these advances have matured to the degree that they have been codified into mathematical models for simulation with computers. For a new generation of young scientists and engineers entering the wastewater treatment profession, the quantity, complexity and diversity of these new developments can be overwhelming, particularly in developing countries where access is not readily available to advanced level tertiary education courses in wastewater treatment. Biological Wastewater Treatment addresses this deficiency. It assembles and integrates the postgraduate course material of a dozen or so professors from research groups around the world that have made significant contributions to the advances in wastewater treatment. The book forms part of an internet-based curriculum in biological wastewater treatment which also includes: Summarized lecture handouts of the topics covered in book Filmed lectures by the author professors Tutorial exercises for students self-learning Upon completion of this curriculum the modern approach of modelling and simulation to wastewater treatment plant design and operation, be it activated sludge, biological nitrogen and phosphorus removal, secondary settling tanks or biofilm systems, can be embraced with deeper insight, advanced knowledge and greater confidence.




Microbial Electrochemical Technologies


Book Description

This book encompasses the most updated and recent account of research and implementation of Microbial Electrochemical Technologies (METs) from pioneers and experienced researchers in the field who have been working on the interface between electrochemistry and microbiology/biotechnology for many years. It provides a holistic view of the METs, detailing the functional mechanisms, operational configurations, influencing factors governing the reaction process and integration strategies. The book not only provides historical perspectives of the technology and its evolution over the years but also the most recent examples of up-scaling and near future commercialization, making it a must-read for researchers, students, industry practitioners and science enthusiasts. Key Features: Introduces novel technologies that can impact the future infrastructure at the water-energy nexus. Outlines methodologies development and application of microbial electrochemical technologies and details out the illustrations of microbial and electrochemical concepts. Reviews applications across a wide variety of scales, from power generation in the laboratory to approaches. Discusses techniques such as molecular biology and mathematical modeling; the future development of this promising technology; and the role of the system components for the implementation of bioelectrochemical technologies for practical utility. Explores key challenges for implementing these systems and compares them to similar renewable energy technologies, including their efficiency, scalability, system lifetimes, and reliability.




Innovative Wastewater Treatment & Resource Recovery Technologies: Impacts on Energy, Economy and Environment


Book Description

This book introduces the 3R concept applied to wastewater treatment and resource recovery under a double perspective. Firstly, it deals with innovative technologies leading to: Reducing energy requirements, space and impacts; Reusing water and sludge of sufficient quality; and Recovering resources such as energy, nutrients, metals and chemicals, including biopolymers. Besides targeting effective C,N&P removal, other issues such as organic micropollutants, gases and odours emissions are considered. Most of the technologies analysed have been tested at pilot- or at full-scale. Tools and methods for their Economic, Environmental, Legal and Social impact assessment are described. The 3R concept is also applied to Innovative Processes design, considering different levels of innovation: Retrofitting, where novel units are included in more conventional processes; Re-Thinking, which implies a substantial flowsheet modification; and Re-Imagining, with completely new conceptions. Tools are presented for Modelling, Optimising and Selecting the most suitable plant layout for each particular scenario from a holistic technical, economic and environmental point of view.




Biology Of Wastewater Treatment (2nd Edition)


Book Description

This comprehensive text provides the reader with both a detailed reference and a unified course on wastewater treatment. Aimed at scientists and engineers, it deals with the environmental and biological aspects of wastewater treatment and sludge disposal.The book starts by examining the nature of wastewaters and how they are oxidized in the natural environment. An introductory chapter deals with wastewater treatment systems and examines how natural principles have been harnessed by man to treat his own waste in specialist reactors. The role of organisms is considered by looking at kinetics, metabolism and the different types of micro-organisms involved. All the major biological process groups are examined in detail, in highly referenced chapters; they include fixed film reactors, activated sludge, stabilization ponds, anaerobic systems and vegetative processes. Sludge treatment and disposal is examined with particular reference to the environmental problems associated with the various disposal routes. A comprehensive chapter on public health looks at the important waterborne organisms associated with disease, as well as removal processes within treatment systems. Biotechnology has had an enormous impact on wastewater treatment at every level, and this is explored in terms of resource reuse, biological conversion processes and environmental protection. Finally, there is a short concluding chapter that looks at the sustainability of waste water treatment. The text is fully illustrated and supported by over 3000 references./a




Nitrification and Denitrification in the Activated Sludge Process


Book Description

Nitrification and Denitrification in the Activated Sludge Process, the first in a series on the microbiology of wastewater treatment, comprises the critical topics of cost-effective operation, permit compliance, process control, and troubleshooting in wastewater treatment plants. Avoiding the technical jargon, chemical equations, and kinetics that typically accompany such texts, Nitrification and Denitrification in the Activated Sludge Process directly addresses plant operators and technicians, providing necessary information for understanding the microbiology and biological conditions that occur in the treatment process. Of special interest to wastewater treatment plant operators are the bacteria that degrade nitrogenous wastes–the nitrifying bacteria–and the bacteria that degrade carbonaceous wastes–the cBOD-removing bacteria. Both groups of bacteria need to be routinely monitored and operational conditions favorably adjusted to ensure desired nitrification. Each chapter in this groundbreaking study offers a better understanding of the importance of nitrification and denitrification and the bacteria involved in these crucial processes. Chapters include: Organotrophs The Wastewater Nitrogen Cycle Nitrite Ion Accumulation Dissolved Oxygen Denitrifying Bacteria Gaseous End Products Free Molecular Oxygen The Occurrence of Denitrification




Design and Retrofit of Wastewater Treatment Plants for Biological Nutritient Removal


Book Description

This book presents information that can be used for the design and operation of wastewater treatment plants that utilize biological nutrient removal processes, i.e., processes that utilize biological mechanisms instead of chemical mechanisms, to remove phosphorus and nitrogen from wastewaters. The book provides: basic fundamentals, concepts, and theories; design of prefermentation units, various types of BNR systems, and secondary clarifiers; retrofitting conventional activated sludge plants; modeling considerations; and special considerations for BNR systems. It includes full-scale and pilot plant case histories, design examples, and retrofit of existing plants.